INDICE SINTETICO

1	Evoluzione: molecole, geni, cellule e organismi	1
2	Fondamenti chimici del funzionamento cellulare	33
3	Struttura e funzione delle proteine	67
4	Coltivazione e osservazione delle cellule	135
5	Meccanismi molecolari e genetici fondamentali	171
6	Tecniche di genetica molecolare	219
7	Geni, cromatina e cromosomi	269
8	Controllo trascrizionale dell'espressione genica	313
9	Controllo post-trascrizionale dell'espressione genica	371
10	Struttura e organizzazione delle biomembrane	427
11	Trasporto di ioni e piccole molecole	455
12	Bioenergetica e funzionamento cellulare	497
13	Trasporto di proteine nelle membrane cellulari e negli organuli	559
14	Traffico vescicolare, secrezione ed endocitosi	605
15	Recettori, ormoni e segnalazione cellulare	643
16	Fattori di crescita e citochine nel controllo dell'espressione genica	685
17	Organizzazione cellulare e movimento: microfilamentii	731
18	Organizzazione cellulare e movimento: microtubuli e filamenti intermedi	773
19	Ciclo cellulare della cellula eucariote	823
20	Integrazione delle cellule nei tessuti	875
21	Risposta all'ambiente extracellulare	931
22	Cellule staminali, asimmetria cellulare e morte cellulare regolata	963
23	Cellule del sistema nervoso	1015
24	Fondamenti molecolari dell'immunologia	1065
25	Aspetti molecolari e cellulari del cancro	1119

INDICE GENERALE

Prefa	zione alla quarta edizione italiana X	ΧV
Strut	tura del libro XX	ΧVΙ
1	Evoluzione: molecole, geni, cellule e organismi	1
1.1	Le molecole della vita	6
•	Le proteine determinano la struttura delle cellule e svolgono la maggior parte delle funzioni cellulari	7
•	Gli acidi nucleici contengono informazioni codificate per fabbricare le proteine al momento giusto e al posto giusto	8
•	I fosfolipidi sono i costituenti essenziali di tutte le membrane cellulari	10
•	Il controllo qualità di tutte le macromolecole cellulari è essenziale per la vita	11
1.2	Struttura e funzione delle cellule procariote	11
•	I procarioti includono due regni: archei e batteri	11
•	Molti batteri, tra cui <i>Escherichia coli</i> , sono ampiamente usati nella ricerca biologica	12
1.3	Struttura e funzione delle cellule eucariote	14
•	Il citoscheletro ha molte funzioni importanti	14
•	Il nucleo contiene il DNA genomico, gli apparati per la sintesi di DNA e RNA e una matrice fibrosa	15
•	Il reticolo endoplasmatico è il sito di sintesi della maggior parte delle proteine di membrana e secrete così come di molti lipidi	16
•	Il complesso di Golgi smista le proteine secrete e molte proteine di membrana alle loro destinazioni finali nella cellula	17
•	Gli endosomi trasportano proteine e particelle dall'esterno all'interno della cellula	17
•	I lisosomi sono i centri di riciclaggio cellulari	17
•	I vacuoli vegetali immagazzinano acqua, ioni e piccole molecole di nutrienti come zuccheri e amminoacidi	18
•	I perossisomi e i gliossisomi vegetali metabolizzano gli acidi grassi e altre piccole molecole senza produrre ATP da ADP e P _i	18
•	I mitocondri sono i principali siti di produzione dell'ATP nelle cellule aerobiche	19
•	I cloroplasti contengono compartimenti interni dove avviene la fotosintesi	19
•	Molte strutture simili a organuli non sono circondate da una membrana	20
•	Tutte le cellule eucariote usano un analogo ciclo cellulare per regolare la loro divisione	20
1.4	Gli eucarioti unicellulari ampiamente utilizzati nella ricerca di biologia cellulare	21
•	I lieviti sono utilizzati per studiare aspetti fondamentali delle strutture e delle funzioni della cellula eucariote	21

IV Indice generale © 978-88-08-69993-0

•	Le mutazioni nel lievito hanno portato all'identificazione di proteine chiave nel ciclo cellulare	23	•	I legami idrogeno sono interazioni non covalenti che determinano le proprietà dell'acqua e la solubilità in acqua di molecole non cariche	39
•	Gli studi nell'alga <i>Chlamydomonas reinhardtii</i> hanno portato allo sviluppo di una tecnica	2.4	•	Le interazioni di van der Waals sono deboli interazioni attrattive causate da dipoli temporanei	40
•	per analizzare le funzioni cerebrali Il parassita che causa la malaria contiene degli organuli che gli consentono di avere	24	•	L'effetto idrofobico induce le molecole non polari ad aderire l'una con l'altra La complementarità mediata da interazioni	41
1.5	un particolare ciclo cellulare Struttura, funzione, evoluzione	24	·	non covalenti permette la formazione di legami stretti e altamente specifici tra le molecole biologiche	42
	e differenziamento dei metazoi	26	2.2	I costituenti chimici delle cellule	43
•	La pluricellularità richiede l'adesione tra cellule e tra cellule e matrice	26	•	Gli amminoacidi che compongono le proteine si differenziano solo per le catene laterali	43
	Gli epiteli si sono originati nelle prime fasi dell'evoluzione	26	•	Per sintetizzare gli acidi nucleici sono utilizzati cinque nucleotidi diversi	47
•	Le cellule sono organizzate in tessuti e i tessuti in organi	26	•	I monosaccaridi si assemblano covalentemente in polisaccaridi lineari e ramificati	48
•	La genomica ha rivelato importanti aspetti dell'evoluzione e della funzione cellulare dei metazoi	27	•	I fosfolipidi si associano mediante legami non covalenti per formare la struttura di base	40
•	Lo sviluppo sfrutta un gruppo di fattori di trascrizione master conservati e comporta	27		del doppio strato delle membrane biologiche	50
	modifiche epigenetiche al DNA e alle proteine		2.3	Reazioni chimiche ed equilibrio chimico	53
1.6	istoniche associate I metazoi ampiamente utilizzati	28	•	Una reazione chimica è in equilibrio quando le velocità delle reazioni diretta e inversa sono uguali	53
	nella ricerca di biologia cellulare Drosophila melanogestar a Casporhabditis alegans	29	•	Le costanti di equilibrio riflettono il grado di avanzamento di una reazione chimica	53
•	Drosophila melanogaster e Caenorhabditis elegans sono utilizzati per identificare i geni coinvolti nella regolazione dello sviluppo animale	30	•	Nelle cellule le reazioni chimiche sono in condizioni di stato stazionario	54
•	Le planarie sono utilizzate per studiare le cellule staminali e la rigenerazione dei tessuti	30	•	Le costanti di dissociazione delle reazioni di legame riflettono l'affinità delle molecole	
•	Gli studi su pesci, topi e altri vertebrati danno informazioni sullo sviluppo e sulle malattie umane	31	•	che interagiscono I fluidi biologici hanno caratteristici valori di pH	54 55
•	Le malattie genetiche umane rivelano importanti aspetti della funzione cellulare	31	•	Gli ioni idrogeno sono rilasciati dagli acidi e catturati dalle basi	55
•	Gli esperimenti di sequenziamento a singola cellula permettono di identificare nuovi tipi		•	I tamponi mantengono costante il pH dei fluidi intracellulari ed extracellulari	56
•	di cellule I prossimi capitoli presentano molte tecniche	31	2.4	L'energetica biochimica	58
	e dati sperimentali che spiegano come abbiamo acquisito le conoscenze su struttura e funzione	22	•	Nei sistemi biologici sono importanti varie forme di energia	58
	delle cellule	32	•	Le cellule possono convertire l'energia da una forma all'altra	59
2	Fondamenti chimici		•	La variazione di energia libera determina se una reazione chimica avverrà spontaneamente	59
		33	•	Il valore di $\Delta G''$ di una reazione può essere calcolato dalla sua $K_{\rm eq}$	60
2.1	Legami covalenti e interazioni non covalenti	34	•	La velocità di una reazione dipende dall'energia di attivazione necessaria per promuovere i reagenti in uno stato di transizione	61
•	La struttura elettronica dell'atomo determina il numero e la geometria dei legami covalenti che può formare	35	•	La vita dipende dall'accoppiamento di reazioni chimiche energeticamente sfavorevoli con altre energeticamente favorevoli	61
•	I legami covalenti non sono tutti uguali: gli elettroni possono essere condivisi in modo eguale o ineguale	36	•	L'idrolisi di ATP rilascia considerevoli quantità di energia libera e alimenta molti processi cellulari	62
•	I legami covalenti sono molto più forti e più stabili delle interazioni non covalenti	38	•	L'ATP si forma durante la fotosintesi e la respirazione	63
•	I legami ionici sono interazioni non covalenti create da attrazioni elettrostatiche tra ioni	-	•	NAD ⁺ e FAD accoppiano molte reazioni biologiche di ossidazione e riduzione	64
	con carica opposta	38	RIPA	SSO ATTIVO	65

© 978-88-08-69993-0 Indice generale

٧

3	Struttura e funzione delle proteine	67	•	Il legame non covalente permette la regolazione allosterica o cooperativa delle proteine	104
3.1	La struttura gerarchica delle proteine	69	•	I legami non covalenti di calcio e GTP sono ampiamente utilizzati come interruttori allosterici per controllare l'attività delle proteine	105
•	La struttura primaria di una proteina è la disposizione lineare dei suoi amminoacidi	69	•	L'attività delle proteine può essere regolata da modifiche covalenti	103
•	Le strutture secondarie sono gli elementi fondamentali dell'architettura delle proteine	70	•	Fosforilazione e defosforilazione regolano l'attività delle proteine in maniera covalente	106
•	I motivi strutturali sono combinazioni regolari di strutture secondarie	73	•	La proteina chinasi A rappresenta un esempio tipico di struttura e funzione di molte chinasi	107
•	Il ripiegamento finale di una catena polipeptidica determina la sua struttura terziaria	74	•	L'attività delle chinasi è spesso regolata dalla fosforilazione	109
•	I diversi modi di rappresentare la conformazione delle proteine forniscono tipi di informazioni		•	Ubiquitinazione e deubiquitinazione covalenti regolano l'attività delle proteine	109
•	differenti I domini strutturali e funzionali sono moduli	75 75	•	Il taglio proteolitico attiva o disattiva irreversibilmente alcune proteine	110
•	della struttura terziaria Il confronto di sequenze e strutture fornisce	76	•	Regolazioni più complesse: il controllo della localizzazione delle proteine	111
•	informazioni su funzione ed evoluzione delle proteine Le proteine si distribuiscono in quattro grandi	77	3.5	Purificazione, identificazione e caratterizzazione delle proteine	112
•	categorie strutturali Le proteine multimeriche si assemblano in struttura quatameria, complessi	78	•	La centrifugazione può separare particelle e molecole di massa o densità differenti	112
	in strutture quaternarie, complessi macromolecolari e condensati biomolecolari	80	•	L'elettroforesi permette di separare le molecole sulla base del rapporto carica/massa	113
3.2	Il ripiegamento delle proteine	84	•	La cromatografia liquida permette di separare le proteine sulla base di massa, carica o affinità	
•	I legami peptidici planari limitano le forme in cui una proteina può ripiegarsi	84	•	di legame Saggi immunologici ed enzimatici altamente	115
•	Il ripiegamento di una proteina è facilitato dalle isomerasi della prolina	84	•	specifici possono individuare singole proteine I radioisotopi sono strumenti indispensabili	118
•	Le informazioni per il ripiegamento di una proteina sono codificate nella sua sequenza amminoacidica	85	•	per individuare le molecole biologiche La spettrometria di massa permette	119
•	Il ripiegamento delle proteine <i>in vivo</i> è agevolato dalle proteine chaperon	86		di determinare la massa e la sequenza delle proteine	122
•	Le proteine ripiegate in modo anomalo possono formare fibrille amiloidi coinvolte in patologie	91	•	La struttura primaria delle proteine può essere determinata con metodi chimici e dedotta dalle sequenze geniche	125
3.3	Legame delle proteine e catalisi enzimatica	92	•	La conformazione delle proteine può essere determinata con sofisticati metodi fisici	125
•	Le funzioni della maggior parte delle proteine dipendono dalle risposte a specifici ligandi	92	3.6	La proteomica	129
•	Gli enzimi sono catalizzatori molto efficienti e specifici Nel sito attivo di un enzima si legano i substrati	93	•	La proteomica è lo studio di tutte le proteine o di un loro grande gruppo in un sistema biologico	129
•	e avviene la catalisi Le serina proteasi esemplificano come funziona	94	•	Le moderne tecniche di spettrometria di massa sono fondamentali per l'analisi proteomica	130
•	il sito attivo di un enzima Gli enzimi in una comune via metabolica sono	96 99	KIPA	SSO ATTIVO	132
3.4	spesso fisicamente associati fra loro La regolazione della funzione delle proteine	100	4	Coltivazione e osservazione delle cellule	135
•	La regolazione della sintesi e della degradazione delle proteine è una proprietà fondamentale		4.1	Crescita e studio delle cellule in coltura	136
•	delle cellule Il proteasoma è una complessa macchina	101	•	Per la coltivazione delle cellule animali sono necessari mezzi ricchi di nutrienti e superfici	
•	molecolare utilizzata per degradare le proteine L'ubiquitina marca le proteine citosoliche che	101	•	solide particolari Le colture cellulari primarie e i ceppi cellulari	136
-	devono essere degradate nei proteasomi	103	-	hanno una durata di vita limitata	137

VI Indice generale © 978-88-08-69993-0

•	Le cellule trasformate possono crescere in coltura indefinitamente	137	•	Cellule e tessuti sono tagliati in sezioni sottili per l'analisi al microscopio elettronico	162
•	La citofluorimetria di flusso separa tipi cellulari differenti	138	•	La microscopia immunoelettronica localizza le proteine a livello ultrastrutturale	162
•	La crescita cellulare in coltura bidimensionale o tridimensionale simula l'ambiente <i>in vivo</i>	139	•	La criomicroscopia elettronica consente la visualizzazione dei campioni senza fissazione	
•	Le cellule staminali possono differenziarsi in coltura formando organoidi	140	•	e colorazione La microscopia elettronica a scansione di oggetti	164
•	Gli ibridomi producono notevoli quantità di anticorpi monoclonali	141		ricoperti con metalli può rivelare caratteristiche della superficie delle cellule	164
•	Vari processi biologici possono essere studiati con le colture cellulari	142	4.4	L'isolamento degli organuli cellulari	166
•	I farmaci sono comunemente usati nella ricerca biologica	143	•	La rottura delle cellule libera gli organuli e altri contenuti cellulari	166
4.2	La microscopia ottica: esplorazione		•	I diversi organuli possono essere separati mediante centrifugazione	166
	della struttura cellulare e visualizzazione delle proteine nelle cellule	144	•	Gli anticorpi specifici per gli organuli sono utili per ottenere preparazioni altamente purificate	167
•	La risoluzione del microscopio ottico è di circa 0,2 μm	144	•	La proteomica rivela la composizione proteica degli organuli	168
•	La microscopia a contrasto di fase e quella a contrasto di interferenza differenziale visualizzano le cellule vive non colorate	145	Ripas	SSO ATTIVO	169
•	La visualizzazione dei dettagli subcellulari spesso richiede che i campioni siano fissati, sezionati e colorati	147	5	Meccanismi molecolari e genetici fondamentali	171
•	La microscopia a fluorescenza può localizzare e quantificare molecole specifiche nelle cellule	148	5.1	La struttura a doppia elica del DNA	173
•	Le concentrazioni ioniche intracellulari possono essere determinate con coloranti fluorescenti	110	•	Il DNA nativo è una doppia elica di filamenti antiparalleli complementari	174
	sensibili agli ioni	148	•	I filamenti di DNA possono separarsi in maniera reversibile	176
•	La microscopia a immunofluorescenza può identificare specifiche proteine in cellule fissate	148	•	Le molecole di DNA possono acquisire uno stress torsionale	177
•	L'espressione di specifiche proteine fluorescenti permette la loro visualizzazione in cellule vive	150	5.2	La replicazione del DNA	179
•	La microscopia a deconvoluzione e quella confocale permettono la visualizzazione di oggetti tridimensionali fluorescenti	151	•	La DNA polimerasi richiede uno stampo e un primer per replicare il DNA	179
•	La microscopia a due fotoni consente la visualizzazione in profondità nei campioni di tessuto	153	•	Lo svolgimento del DNA a doppia elica e la formazione dei filamenti figli avvengono alla forcella di replicazione	180
•	La microscopia TIRF fornisce una visualizzazione eccezionale in un piano focale	153	•	La forcella di replicazione del DNA avanza in cooperazione con molteplici proteine	181
•	La FRAP rivela la dinamica dei componenti cellulari	155	•	La replicazione del DNA avviene bidirezionalmente da ciascuna origine	183
•	La FRET misura la distanza tra i fluorocromi	156	5.3	Riparazione e ricombinazione del DNA	184
•	La tecnica dell'optogenetica usa la luce per regolare eventi in funzione dello spazio e del tempo	157	•	Danni chimici e radiazioni possono portare	
•	Gli oggetti fluorescenti con sorgente puntiforme possono essere localizzati con una risoluzione		•	a mutazioni nel DNA I sistemi ad alta fedeltà di riparazione del DNA	184
•	nanometrica Un microscopio a super risoluzione può	158		per escissione riconoscono e riparano il danno L'escissione delle basi ripara gli appaiamenti	185
	localizzare le proteine con un'accuratezza di nanometri	158	•	scorretti T·G e le basi danneggiate L'escissione degli appaiamenti scorretti ripara	185
•	La microscopia a foglio di luce può visualizzare velocemente le cellule in tessuti vivi	158		altri errori di appaiamento e piccole inserzioni e delezioni	186
4.3	La microscopia elettronica: immagini	454	•	L'escissione dei nucleotidi ripara gli addotti chimici che distorcono la forma normale del DNA	187
•	ad alta risoluzione Singole molecole o strutture possono essere	161	•	Due sistemi usano la ricombinazione per riparare le rotture del doppio filamento del DNA	188
	visualizzate utilizzando una colorazione negativa o un'ombreggiatura metallica	161	•	La ricombinazione omologa può riparare il danno al DNA e generare diversità genetica	189

© 978-88-08-69993-0 Indice generale **VII**

5.4	Trascrizione dei geni codificanti proteine e formazione dell'mRNA	193	•	La segregazione delle mutazioni negli incroci sperimentali rivela se esse siano dominanti	221
•	Un filamento stampo di DNA è trascritto dall'RNA polimerasi in un filamento di RNA complementare Gli mRNA precursori eucarioti sono processati	193	•	o recessive Le mutazioni condizionali possono essere utilizzate per lo studio di geni essenziali nel lievito	221
•	per produrre mRNA funzionali Lo splicing alternativo dell'RNA aumenta il numero delle proteine che possono essere	195	•	Le mutazioni letali recessive nei diploidi possono essere identificate attraverso autoincrocio e mantenute negli eterozigoti	224
5.5	espresse da un singolo gene eucariote La decodifica dell'mRNA da parte dei tRNA	197 198	•	I test di complementazione determinano se mutazioni recessive diverse si trovano nello stesso gene	225
•	L'RNA messaggero trasporta le informazioni contenute nel DNA in un codice genetico		•	I doppi mutanti sono utili nel definire in quale ordine funzionano le proteine	226
•	di tre lettere La struttura ripiegata del tRNA promuove le sue funzioni di decodifica	199 200	•	La soppressione genetica e la letalità sintetica possono rivelare proteine interagenti o ridondanti	227
•	Un appaiamento di basi non standard si forma spesso tra i codoni e gli anticodoni	201	•	L'analisi globale delle combinazioni di doppi mutanti può rivelare reti di funzioni geniche	228
•	Gli amminoacidi sono legati ai loro tRNA affini con grande accuratezza	202	6.2	Clonaggio del DNA e sua caratterizzazione	229
5.6	La sintesi progressiva delle proteine sui ribosomi	203	•	Gli enzimi di restrizione e le DNA ligasi permettono l'inserimento dei frammenti di DNA nei vettori di clonaggio	230
•	I ribosomi sono macchine che sintetizzano proteine Il metionil tRNA _i ^{Met} riconosce il codone	203	•	I frammenti di DNA isolati possono essere clonati in vettori plasmidici di <i>E. coli</i>	231
•	di inizio AUG L'inizio della traduzione eucariote di solito	205	•	Le librerie genomiche di lievito possono essere costruite con vettori shuttle e analizzate mediante la complementazione funzionale	232
•	avviene al primo AUG a valle dell'estremità 5' dell'mRNA Durante l'allungamento della catena ogni	205	•	Le librerie di cDNA rappresentano le sequenze dei geni codificanti proteine	233
	amminoacil tRNA in arrivo si muove lungo tre siti ribosomiali	207	•	La reazione a catena della polimerasi amplifica una sequenza specifica di DNA da una miscela	235
•	La traduzione è terminata da fattori di rilascio quando si raggiunge un codone di stop I polisomi e il riciclo rapido dei ribosomi	208	•	complessa Le molecole di DNA clonate possono essere sequenziate rapidamente attraverso metodi	
•	aumentano l'efficienza della traduzione La funzione della superfamiglia delle proteine GTPasi nelle varie fasi di controllo della qualità	209	6.3	basati sulla PCR L'utilizzo delle informazioni sulla sequenza per identificare i geni	237
•	della traduzione Le mutazioni nonsenso possono essere soppresse	209		e la loro funzione	240
5.7	da mutazioni del tRNA I virus: parassiti del sistema genetico	210	•	Molti geni possono essere facilmente identificati all'interno delle sequenze genomiche I principi bioinformatici possono essere usati	240
	della cellula La gamma degli ospiti virali è ristretta	211 211	·	per dedurre le probabili conseguenze funzionali delle mutazioni	241
•	I capsidi virali sono costituiti da serie regolari di uno o alcuni tipi di proteine	212	•	La funzione e le origini evolutive dei geni e delle proteine possono essere dedotte dalla loro sequenza	242
•	I cicli litici di crescita virale portano alla morte delle cellule ospite	212	•	Il confronto di sequenze simili derivate da specie differenti aiuta a stabilire le relazioni evolutive	2-12
RIPAS	Il DNA virale è integrato nel genoma della cellula ospite in alcuni cicli non litici di crescita virale SSO ATTIVO	215 217	•	fra le proteine Il numero di geni codificanti proteine del genoma non è direttamente connesso alla complessità biologica di un organismo	243 243
6	Tecniche di genetica molecolare	219	6.4	Localizzazione e identificazione dei geni che specificano per tratti umani	245
6.1	L'analisi genetica delle mutazioni per identificare e studiare i geni	220	•	Le malattie monogeniche seguono uno dei tre principali pattern di ereditarietà I polimorfismi del DNA sono usati come	246
•	Gli alleli mutanti recessivi e dominanti generalmente hanno effetti opposti sulla funzione del gene	221		marcatori per la mappatura mediante linkage delle mutazioni umane	246

VIII Indice generale © 978-88-08-69993-0

•	Gli studi di linkage consentono di mappare un gene malattia con una risoluzione di circa 1 Mbp	248	•	I geni non codificanti proteine codificano RNA funzionali	276
•	Ulteriori analisi sono necessarie per localizzare il gene malattia nel DNA clonato	249	7.2	L'organizzazione cromosomica dei geni e del DNA non codificante	277
•	Molte malattie ereditarie sono causate da difetti genetici multipli	249	•	I genomi di molti organismi contengono un'elevata quantità di DNA non codificante	278
•	L'identificazione dei fattori di rischio genetico di tratti complessi	250	•	Molti DNA a sequenza semplice sono concentrati in specifiche regioni cromosomiche	278
•	Alcuni geni importanti in medicina possono essere identificati come alleli che proteggono dalla malattia	251	•	L'impronta del DNA (DNA fingerprinting) dipende dalle differenze di lunghezza dei DNA a sequenza semplice	280
•	L'identificazione delle mutazioni che causano il cancro nelle cellule tumorali	252	•	Il DNA intergenico non classificato occupa una porzione significativa del genoma	280
6.5	L'uso di frammenti di DNA clonati per studiare l'espressione genica	252	7.3	Gli elementi di DNA trasponibili (mobili)	281
•	Le tecniche di ibridazione <i>in situ</i> permettono di rilevare specifici mRNA	253	•	Il movimento di elementi mobili coinvolge un intermedio a DNA o RNA	281
•	I microarray a DNA possono essere utilizzati per valutare simultaneamente l'espressione di molti geni	253	•	Gli elementi mobili nei batteri sono principalmente trasposoni a DNA noti come sequenze di inserzione	282
•	L'analisi di raggruppamento (cluster) dei risultati ottenuti da molteplici esperimenti di espressione		•	I trasposoni a DNA degli eucarioti si muovono con un meccanismo taglia e incolla	283
•	permette di identificare geni che sono coregolati Il sequenziamento dei cDNA permette l'analisi	255	•	I retrotrasposoni LTR si comportano come retrovirus intracellulari	284
•	dell'espressione genica in singole cellule I sistemi di espressione in <i>E. coli</i> permettono	255	•	I retrotrasposoni non LTR si traspongono mediante un meccanismo specifico	287
	la produzione di elevate quantità di proteine a partire dai geni clonati	256	•	Il DNA genomico presenta anche altri RNA retrotrasposti	289
•	I vettori di espressione plasmidici possono essere modificati per l'uso in cellule animali	257	•	Gli elementi di DNA mobili hanno influenzato significativamente l'evoluzione	289
6.6	L'alterazione della funzione di specifici geni		7.4	L'organizzazione strutturale della cromatina e dei cromosomi eucarioti	291
•	I geni wild type di lievito possono essere sostituiti per ricombinazione omologa con alleli mutanti	260	•	La cromatina è costituita da nucleosomi	291
•	I sistemi CRISPR ingegnerizzati permettono un preciso editing genomico	261	•	La struttura della cromatina è conservata tra eucarioti	294
•	Attraverso la ricombinazione nelle cellule somatiche è possibile inattivare i geni in tessuti specifici	265	•	La cromatina è una catena disordinata di nucleosomi impacchettati a diversa densità nel nucleo	294
•	L'interferenza a RNA determina l'inattivazione di un gene attraverso la distruzione del corrispondente mRNA	265	•	Le modifiche delle code istoniche controllano la condensazione e la funzione della cromatina	295
RIPAS	SSO ATTIVO	268	•	Altre proteine non istoniche regolano la trascrizione e la replicazione	302
7	Geni, cromatina e cromosomi	269	7.5	Morfologia ed elementi funzionali dei cromosomi eucarioti	303
			•	Il numero, le dimensioni e la forma dei cromosomi metafasici sono specie-specifici	303
7.1	Organizzazione e struttura dei geni eucarioti La maggior parte dei geni degli eucarioti	271	•	Durante la metafase i cromosomi possono essere distinti tra loro grazie al pattern di bandeggio e alla colorazione	303
	pluricellulari contiene introni e produce mRNA che codificano proteine singole	272	•	La colorazione dei cromosomi e il sequenziamento del DNA rivelano l'evoluzione dei cromosomi	305
•	Le unità trascrizionali dei genomi degli eucarioti possono essere semplici o complesse	272	•	I cromosomi politenici interfasici sono dovuti ad amplificazione genica	307
•	I geni che codificano proteine possono essere unici o appartenere a una famiglia genica	274	•	Sono necessari tre elementi funzionali per la replicazione e l'ereditarietà stabile dei cromosomi	307
•	I prodotti genici che devono essere espressi ad alto livello sono codificati da copie multiple del gene	276	•	Le sequenze centromeriche variano enormemente in lunghezza e complessità	e 308

© 978-88-08-69993-0 Indice generale **IX**

•	L'aggiunta di sequenze telomeriche da parte della telomerasi previene l'accorciamento		•	I repressori possono dirigere la deacetilazione degli istoni presso geni specifici	344
Ripa	dei cromosomi .sso attivo	310 312	•	Gli attivatori possono dirigere l'acetilazione degli istoni presso geni specifici	346
0	Controllo trascrizionale		•	I complessi di rimodellamento della cromatina contribuiscono ad attivare o reprimere la trascrizione	346
8	dell'espressione genica	313	•	I fattori di trascrizione pionieri iniziano il processo di attivazione genica durante	
8.1	Uno sguardo generale alla trascrizione eucariote	316		il differenziamento cellulare	347
•	Gli elementi regolatori nel DNA eucariote	310	•	Il complesso Mediatore forma un ponte molecolare tra i domini di attivazione e Pol II	348
	si trovano sia vicino sia a distanza di molte kilobasi dal sito di inizio della trascrizione	316	•	I condensati trascrizionali aumentano il tasso di inizio della trascrizione	349
•	Tre RNA polimerasi nucleari catalizzano la formazione di diversi RNA negli eucarioti	318	•	La trascrizione dei geni altamente espressi avviene a ondate	350
•	Il dominio a pinza permette all'RNA polimerasi Il di trascrivere lunghi frammenti di DNA	I 320	8.5	La regolazione dell'attività dei fattori di trascrizione	353
•	La subunità maggiore dell'RNA polimerasi II ha una ripetizione carbossi-terminale essenziale	321	•	I siti ipersensibili alla DNasi I riflettono la storia	333
8.2	Promotori dell'RNA polimerasi II			dello sviluppo durante il differenziamento cellulare	354
	e fattori generali di trascrizione	322	•	I recettori nucleari sono regolati da ormoni liposolubili	354
•	L'RNA polimerasi II inizia la trascrizione da sequenze di DNA corrispondenti al cap al 5' degli mRNA	323	•	Tutti i recettori nucleari condividono una struttura a domini	356
•	I TATA box, gli iniziatori e le isole CpG fungono da promotori nel DNA eucariote	323	•	Gli elementi di risposta ai recettori nucleari contengono ripetizioni dirette o invertite	356
•	I fattori generali di trascrizione posizionano l'RNA polimerasi II al sito di inizio della		•	Gli ormoni che legano un recettore nucleare ne regolano l'attività di fattore di trascrizione	357
•	trascrizione e ne aiutano l'inizio I fattori di allungamento regolano gli stadi iniziali	325	•	I metazoi regolano la transizione dell'RNA polimerasi II dalla fase di inizio	
	della trascrizione nelle regioni vicine al promotore	328		all'allungamento Anche la terminazione della trascrizione	358
8.3	Sequenze di regolazione dei geni codificanti proteine e proteine associate	329		è regolata	359
•	Gli elementi prossimali del promotore regolano i geni degli eucarioti	330	8.6	La regolazione epigenetica della trascrizione	359
•	Gli elementi enhancer distanti spesso favoriscono la trascrizione da parte dell'RNA polimerasi II		•	La metilazione del DNA regola la trascrizione	360
•	Gran parte dei geni degli eucarioti è regolata da numerosi elementi di controllo della trascrizione	331	•	La metilazione di specifiche lisine degli istoni è legata a meccanismi epigenetici di repressione genica	360
•	Il footprinting con la DNasi I e l'EMSA individuano le interazioni DNA-proteina	331	•	Il controllo epigenetico da parte dei complessi Polycomb e Trithorax	362
•	Gli attivatori sono costituiti da domini funzionali distinti	334	•	I lunghi RNA non codificanti dirigono la repressione epigenetica nei metazoi	363
•	I repressori sono la controparte funzionale degli attivatori	335	8.7	Gli altri sistemi di trascrizione	
•	I domini di legame al DNA possono essere classificati in molte tipologie strutturali	336	_	negli eucarioti L'inizio della trascrizione da parte di Pol I	366
•	Domini di attivazione e di repressione strutturalmente diversi regolano la trascrizione	338	Rida	Pol III è analogo a quello di Pol II SSO ATTIVO	366 369
•	Le interazioni tra i fattori di trascrizione aumentano le possibilità di controllo genico	339	iui A		207
•	In corrispondenza degli enhancer si formano complessi multiproteici	340	9	Controllo post-trascrizionale	274
8.4	I meccanismi molecolari di repressione e attivazione trascrizionale	342	9.1	dell'espressione genica	371
•	La formazione dell'eterocromatina silenzia	J4Z	5.1	Il processamento dei pre-mRNA negli eucarioti	372
	l'espressione genica nei telomeri, vicino	342	•	Il cap al 5' è aggiunto agli RNA nascenti poco	374

X Indice generale © 978-88-08-69993-0

•	Durante l'allungamento della catena da parte dell'RNA polimerasi II sono presenti fattori	275	•	L'interferenza a RNA induce la degradazione degli mRNA perfettamente complementari	407
•	di processamento dell'RNA Diverse proteine con domini di legame all'RNA	375	•	La poliadenilazione citoplasmatica promuove la traduzione di alcuni mRNA	408
•	conservati si associano ai pre-mRNA Lo splicing avviene nei pre-mRNA in	376	•	La sintesi proteica può essere regolata globalmente	409
•	corrispondenza di sequenze corte e conservate e attraverso reazioni di transesterificazione Durante lo splicing, gli snRNA si appaiano	378	•	Le proteine che legano sequenze specifiche di RNA controllano la traduzione di specifici mRNA	410
	con il pre-mRNA per selezionare i siti di splicing e guidare le reazioni di transesterificazione	379	•	I meccanismi di sorveglianza impediscono la traduzione di mRNA impropriamente	411
•	Lo spliceosoma catalizza lo splicing del pre-mRNA	380	•	processati La localizzazione degli mRNA permette	411
•	Il taglio e la poliadenilazione al 3' del pre-mRNA sono strettamente accoppiati	385		la produzione di proteine in specifiche regioni del citoplasma	414
9.2	La regolazione del processamento dei pre-mRNA	387	9.5	Il processamento di rRNA e tRNA	417
•	Ulteriori proteine nucleari contribuiscono alla selezione del sito di splicing nei pre-mRNA		•	I geni dei pre-rRNA sono simili in tutti gli eucarioti e funzionano come organizzatori del nucleolo	417
•	lunghi nelle cellule umane e di altri vertebrati Espressione e funzione di isoforme proteiche	387	•	I piccoli RNA nucleolari partecipano al processamento dei pre-rRNA	418
	correlate del canale del K ⁺ nelle cellule ciliate dell'orecchio interno dei vertebrati	388	•	Gli introni di autosplicing del gruppo I sono stati i primi RNA catalitici individuati	421
•	La regolazione dello splicing tramite splicing enhancer e silencer controlla il differenziamento sessuale nella drosofila	389	•	I pre-tRNA sono sottoposti ad ampie modifiche nel nucleo	421
•	I repressori e gli attivatori dello splicing controllano lo splicing in siti alternativi	391	9.6	I corpi nucleari: domini nucleari funzionalmente specializzati	424
•	L'espressione delle isoforme di <i>Dscam</i> nei neuroni retinici della drosofila	391	•	I corpi di Cajal per l'assemblaggio delle RNP	424
•	Splicing anomalo dell'RNA e malattie correlate	392	•	Gli speckle nucleari per il deposito dei fattori di splicing	425
•	Gli introni di autosplicing del gruppo II forniscono indicazioni sull'evoluzione		•	I paraspeckle nucleari per la ritenzione degli RNA	
	degli snRNA	394	•	I corpi nucleari della leucemia promielocitica Le funzioni del nucleolo oltre la sintesi	425
•	Le esonucleasi nucleari e l'esosoma degradano l'RNA processato dai pre-mRNA	395		delle subunità ribosomiali	425
•	Il processamento dell'RNA risolve il problema della trascrizione pervasiva del genoma in cellule di mammifero	397	RIPAS	SSO ATTIVO	426
•	L'editing dell'RNA altera le sequenze di alcuni pre-mRNA	397	10	Struttura e organizzazione delle biomembrane	427
9.3	Il trasporto dell'mRNA attraverso l'involucro nucleare	398	10.1	Il doppio strato lipidico: composizione e organizzazione strutturale	428
•	Le proteine SR mediano l'esportazione nucleare dell'mRNA	399	•	I fosfolipidi formano spontaneamente doppi strati	429
•	I pre-mRNA associati agli spliceosomi non sono esportati dal nucleo	401	•	I doppi strati fosfolipidici formano un compartimento sigillato che delimita uno spazio acquoso interno	430
•	La proteina Rev di HIV regola il trasporto degli mRNA virali non sottoposti a splicing	402	•	Le membrane biologiche contengono tre principali classi di lipidi	432
9.4	I meccanismi citoplasmatici di controllo post-trascrizionale	403	•	La maggior parte dei lipidi e molte proteine si muovono lateralmente nelle membrane biologiche	434
•	La concentrazione di un mRNA nel citoplasma è determinata dalle sue velocità di sintesi e di		•	La composizione lipidica influenza le proprietà fisiche delle membrane	435
•	degradazione La degradazione degli mRNA nel citoplasma	403	•	I foglietti esoplasmatico e citosolico della membrana hanno una composizione lipidica	
_	avviene tramite diversi meccanismi	403		diversa	437
•	I microRNA reprimono la traduzione e inducono la degradazione di specifici mRNA	405	•	Il colesterolo e gli sfingolipidi si aggregano con proteine specifiche in microdomini di membrana	438

© 978-88-08-69993-0 Indice generale

ΧI

•	Le cellule immagazzinano i lipidi in eccesso in gocce lipidiche (<i>lipid droplet</i>)	438	•	Il genoma umano codifica una famiglia di proteine GLUT per il trasporto di zuccheri	ie 462
10.2	Le proteine di membrana: struttura e funzioni fondamentali	439	•	Le proteine di trasporto possono essere studiate utilizzando membrane artificiali e cellule ricombinanti	462
•	Le proteine interagiscono con le membrane in tre modi diversi	440	•	La pressione osmotica determina i flussi di acqua attraverso le membrane	463
•	La maggior parte delle proteine transmembrana è dotata di α-eliche che attraversano la membrana		•	Le acquaporine aumentano la permeabilità delle membrane cellulari all'acqua	464
•	I foglietti β multipli delle porine formano "barili" che attraversano la membrana	443	11.3	Pompe ATP-dipendenti e ambiente ionico intracellulare	465
•	Le catene idrocarburiche legate covalentemente ancorano alcune proteine alla membrana	443	•	Le quattro classi principali di pompe	465
•	Tutte le proteine e i glicolipidi transmembrana sono orientati asimmetricamente nel doppio strato	445	•	ATP-dipendenti Le pompe ioniche ATP-dipendenti generano e mantengono i gradienti ionici attraverso le membrane cellulari	467
•	I motivi che legano i lipidi favoriscono lo smistamento delle proteine periferiche alla membrana	445	•	Il rilassamento muscolare dipende da Ca ²⁺ ATPasi che pompano gli ioni Ca ²⁺ dal citosol al reticolo sarcoplasmatico	
•	Le proteine possono essere rimosse dalle membrane mediante detergenti o soluzioni saline concentrate	446	•	I dettagli del meccanismo di azione della pompa del Ca ²⁺ sono noti	468
10.3	Fosfolipidi, sfingolipidi e colesterolo:		•	La Na ⁺ /K ⁺ ATPasi mantiene le concentrazioni intracellulari di Na ⁺ e K ⁺ nelle cellule animali	470
	sintesi e movimento intracellulare	448	•	Le H ⁺ ATPasi di classe V acidificano il lume di vacuoli e lisosomi	471
•	Gli acidi grassi sono sintetizzati da diversi enzimi importanti a partire da un composto a due atomi di carbonio	449	•	Le proteine ABC esportano un'ampia varietà di farmaci e tossine dalla cellula	472
•	Alcune piccole proteine citosoliche favoriscono il movimento degli acidi grassi	449	•	Alcune proteine ABC "capovolgono" i fosfolipidi e altri substrati liposolubili da un foglietto della membrana all'altro permettono	
•	Gli acidi grassi sono incorporati nei fosfolipidi principalmente nelle membrane del reticolo endoplasmatico	449	•	i movimenti a flip-flop Il regolatore transmembrana ABC della fibrosi	475
•	Le flippasi spostano i fosfolipidi da un foglietto di membrana a quello opposto	451	11.4	cistica è un canale del cloro, non una pompa Canali ionici passivi e potenziale	477
•	Il colesterolo è sintetizzato da enzimi presenti nel citosol e nelle membrane del reticolo	451	•	di membrana a riposo Il flusso selettivo di ioni genera una differenza	478
•	endoplasmatico Il colesterolo e i fosfolipidi sono trasportati tra gli organuli con diversi meccanismi	451	•	di potenziale elettrico attraverso la membrana Il potenziale di membrana a riposo nelle cellule	479
RIPAS	SSO ATTIVO	453		animali dipende in larga misura dal flusso di ioni potassio attraverso canali passivi	480
			•	I canali ionici sono specifici per certi ioni grazie a un filtro molecolare di selettività	481
11	Trasporto di ioni e piccole molecole	455	•	La tecnica di patch clamp permette di misurare il flusso ionico attraverso singoli canali	483
11.1	di membrana	456	•	Nuovi canali ionici possono essere caratterizzati combinando la tecnica di espressione in oociti di anfibio con quella di patch clamp	484
•	Solo i gas e le piccole molecole prive di cariche possono attraversare la membrana per diffusione semplice	456	11.5	Il cotrasporto tramite proteine simporto e antiporto	485
•	Tre classi principali di proteine di membrana mediano il trasporto di molecole e ioni attraverso le membrane cellulari	457	•	L'entrata di ioni Na ⁺ nelle cellule dei mammiferi è termodinamicamente favorita	485
11.2	Il trasporto facilitato del glucosio e dell'acqua	457 459	•	I sistemi di simporto accoppiati al Na ⁺ permettono alle cellule animali di assumere zuccheri e amminoacidi contro gradiente di concentrazione	
•	Il trasporto per uniporto è più rapido e specifico della diffusione semplice	460	•	La struttura di un simporto Na ⁺ /amminoacidi batterico rivela il meccanismo di funzionamento di questi sistemi di trasporto	488
•	La bassa $K_{\rm m}$ dell'uniporto GLUT1 permette di trasportare il glucosio nella maggior parte delle cellule di mammifero	460	•	Una proteina antiporto del Ca ²⁺ dipendente dall'Na ⁺ regola la forza di contrazione delle cellule muscolari cardiache	489

XII Indice generale © 978-88-08-69993-0

•	Diverse proteine di cotrasporto sono coinvolte nella regolazione del pH citosolico	489	12.4	Dinamica dei mitocondri e siti di contatto tra le membrane dei mitocondri e dell'RE	511
•	Un antiporto anionico è essenziale per il trasporto di CO ₂ da parte degli eritrociti	489	•	I mitocondri sono organuli dinamici	511
•	Numerose proteine di trasporto permettono ai vacuoli delle cellule vegetali di accumulare metaboliti e ioni	490	•	Le funzioni e le dinamiche mitocondriali possono dipendere dai contatti diretti con altri organuli	514
11.6	Il trasporto transepiteliale	492	12.5	Ciclo dell'acido citrico e ossidazione degli acidi grassi	515
•	Per trasportare glucosio e amminoacidi attraversi gli epiteli sono necessarie diverse proteine di trasporto	o 493	•	Nella prima parte dello stadio II, il piruvato è convertito ad acetil-CoA ed elettroni ad alta energia	516
•	La semplice terapia di reidratazione dipende dal gradiente osmotico generato dall'assorbimento di glucosio e Na ⁺	493	•	Nella seconda parte dello stadio II, il ciclo dell'acido citrico ossida il gruppo acetilico dell'acetil-CoA a CO ₂ per generare elettroni	
•	Le cellule parietali acidificano il contenuto dello stomaco e mantengono a valori neutri il pH citosolico	493	•	ad alta energia I trasportatori della membrana mitocondriale interna contribuiscono a mantenere appropriate	517
•	Il riassorbimento osseo richiede la funzione coordinata di una pompa protonica di classe V	404		concentrazioni di NAD+ e NADH nel citosol e nella matrice mitocondriale	518
Ripas	e di uno specifico canale del cloro sso attivo	494 495	•	L'ossidazione degli acidi grassi nei mitocondri genera ATP	519
			•	L'ossidazione degli acidi grassi nei perossisomi non genera ATP	520
12	Bioenergetica e funzionamento cellulare	497	12.6	Catena di trasporto degli elettroni e generazione della forza motrice protonica	521
12.1	Chemiosmosi, trasporto degli elettroni, forza motrice protonica e sintesi di ATP	498	•	L'ossidazione del NADH e del FADH2 rilascia una notevole quantità di energia	521
12.2	Il primo passo per accumulare energia		•	Il trasporto degli elettroni nei mitocondri è accoppiato al pompaggio di protoni	522
	dal glucosio: la glicolisi	500	•	Gli elettroni rilasciano energia fluendo attraverso una serie di trasportatori di elettroni	523
•	Durante la glicolisi (stadio I), il glucosio è convertito in piruvato a opera di enzimi citosolici	500	•	Quattro grossi complessi multiproteici (I-IV) accoppiano il trasporto degli elettroni al pompaggio di protoni attraverso	
•	La velocità della glicolisi è regolata in base alle richieste cellulari di ATP	502		la membrana mitocondriale interna	524
•	La fermentazione del glucosio avviene quando l'ossigeno è scarso	503	•	I potenziali di riduzione dei trasportatori di elettroni favoriscono il flusso di elettroni dal NADH all' $\rm O_2$	528
12.3	La struttura dei mitocondri	505	•	I complessi multiproteici della catena di trasporto degli elettroni si assemblano in supercomplessi	529
•	I mitocondri sono organuli multifunzionali e abbondanti	505	•	Le specie reattive dell'ossigeno sono sottoprodotti del processo di trasporto degli elettroni	531
•	I mitocondri hanno due membrane strutturalmente e funzionalmente distinte	505	•	Gli esperimenti con i complessi della catena di trasporto degli elettroni purificati hanno	
•	I mitocondri contengono DNA e si sono evoluti da un singolo evento endosimbiontico	5 00		chiarito la stechiometria del pompaggio di protoni	532
•	che ha coinvolto un alfaproteobatterio Le dimensioni, la struttura e la capacità di codifica dell'mtDNA variano in modo considerevole tra i diversi organismi	508 509	•	Nei mitocondri la forza motrice protonica è dovuta prevalentemente a un gradiente di voltaggio attraverso la membrana interna	532
•	Il DNA mitocondriale è localizzato nella matrice e trasferito durante la mitosi alle cellule figlie		12.7	Lo sfruttamento della forza motrice protonica per sintetizzare ATP	534
•	per ereditarietà citoplasmatica I prodotti dei geni mitocondriali non sono	509	•	Il meccanismo di sintesi dell'ATP è comune a batteri, mitocondri e cloroplasti	534
•	esportati Il codice genetico mitocondriale può differire	510	•	L'ATP sintasi è formata da due complessi multiproteici chiamati F ₀ e F ₁	535
•	dal codice genetico nucleare standard Le mutazioni nel DNA mitocondriale causano gravi patologie genetiche umane	510 510	•	La rotazione della subunità γ di F_1 , indotta dal flusso di protoni attraverso F_0 , alimenta la sintesi di ATP	537

© 978-88-08-69993-0 Indice generale **XIII**

•	Per la sintesi di una molecola di ATP è necessario che più protoni fluiscano attraverso l'ATP sintasi		•	Una sequenza segnale <i>N</i> -terminale idrofoba indirizza le proteine secretorie nascenti all'RE	563
•	La rotazione dell'anello c di F ₀ è alimentata dai protoni che fluiscono attraverso i canali		•	La traslocazione cotraduzionale è innescata da due proteine che idrolizzano il GTP	564
•	transmembrana Per fornire l'ADP e il fosfato necessari per la	539	•	Il passaggio dei polipeptidi in allungamento attraverso il traslocone è trainato dalla traduzione	565
	sintesi di ATP sono richiesti lo scambio ATP-ADI e il trasporto di fosfato attraverso la membrana mitocondriale interna	P 539	•	L'idrolisi dell'ATP alimenta la traslocazione post-traduzionale di alcune proteine secretorie nel lievito	568
•	La velocità di ossidazione mitocondriale normalmente dipende dai livelli di ADP	541	13.2	L'inserimento delle proteine nella membrana dell'RE	569
•	I mitocondri del tessuto adiposo bruno utilizzano la forza motrice protonica per generare calore	542	•	Diverse classi topologiche di proteine integrali di membrana sono sintetizzate sull'RE	569
12.8	Cloroplasti e fotosintesi	543	•	Le sequenze interne di arresto del trasferimento	
•	La fotosintesi nelle piante avviene sulle membrane tilacoidali dei cloroplasti	543		e di ancoraggio determinano la topologia delle proteine ad attraversamento singolo	570
•	I cloroplasti contengono grandi molecole di DNA che spesso codificano per più di un centinaio		•	Le proteine di tipo IV (ad attraversamento multiplo)	573
•	di proteine L'assorbimento della luce da parte dei fotosistemi	545	•	Alcune proteine della superficie cellulare sono legate alla membrana da un'àncora fosfolipidica	575
	nei cloroplasti fornisce l'energia necessaria per sintetizzare NADPH e ATP e per generare	545	•	La topologia di una proteina di membrana può essere spesso dedotta dalla sua sequenza	575
•	O ₂ a partire da H ₂ O Tre dei quattro stadi della fotosintesi avvengono sulle membrane dei tilacoidi e solo in condizioni	343	13.3	Modifiche, ripiegamento e controllo qualità delle proteine nell'RE	577
•	di illuminazione Gli stadi 1 e 2 della fotosintesi convertono	546	•	Un <i>N</i> -oligosaccaride preformato viene aggiunto a molte proteine nell'RE ruvido	578
•	l'energia solare in elettroni ad alta energia che generano una forza motrice protonica e NADPH	546	•	Le catene laterali degli oligosaccaridi possono favorire il ripiegamento e la stabilità delle	578
•	I complessi antenna interni e i complessi di raccolta della luce aumentano l'efficienza della fotosintesi	547	•	glicoproteine I legami disolfuro sono formati e riarrangiati da proteine presenti nel lume dell'RE	579
•	Vari meccanismi proteggono le cellule dai danni delle specie reattive dell'ossigeno durante il trasporto degli elettroni	549	•	Il ripiegamento e l'assemblaggio delle proteine sono favoriti dalle chaperon e da altre proteine dell'RE	581
12.9	La produzione di O ₂ , NADPH e ATP nei primi tre stadi della fotosintesi	550	•	Le proteine non correttamente ripiegate nel reticolo endoplasmatico inducono l'espressione di catalizzatori del ripiegamento proteico	582
•	I primi tre stadi della fotosintesi sulla membrana dei tilacoidi	550	•	Le proteine non assemblate o mal ripiegate nel reticolo endoplasmatico sono spesso	502
•	Le attività relative dei fotosistemi I e II sono regolate	552	13.4	•	583
12.10	Fissazione del carbonio e sintesi dei carboidrati nel quarto stadio			ai mitocondri e ai cloroplasti	584
	della fotosintesi	553	•	Sequenze segnale anfipatiche <i>N</i> -terminali indirizzano le proteine alla matrice mitocondriale	585
•	La rubisco catalizza la fissazione del CO ₂ nello stroma del cloroplasto	553	•	Per l'importazione delle proteine nei mitocondri sono necessari recettori sulla membrana esterna e trasloconi in entrambe le membrane	585
•	La fotorespirazione compete con la fissazione del carbonio ed è ridotta nelle piante C ₄	555	•	Gli studi con proteine chimeriche dimostrano importanti caratteristiche dell'importazione	363
Ripas	SO ATTIVO	557		delle proteine nei mitocondri	588
42	Trasporto di proteine nelle membrane			Per l'ingresso delle proteine nei mitocondri sono necessari tre apporti di energia	588
13		559	•	Le proteine sono avviate ai sottocompartimenti mitocondriali attraverso diversi tipi di segnali e vie	589
13.1	L'indirizzamento delle proteine attraverso la membrana dell'RE	562	•	L'importazione delle proteine nello stroma dei cloroplasti è simile a quella delle proteine nella matrice mitocondriale	592
•	Gli esperimenti di pulse-chase con membrane dell'RE purificate hanno dimostrato che le proteine secrete attraversano la membrana dell'RE	562	•	Le proteine sono indirizzate ai tilacoidi mediante meccanismi analoghi a quelli della traslocazione delle proteine batteriche	592

XIV Indice generale © 978-88-08-69993-0

13.5	Lo smistamento delle proteine perossisomiali	594	•	Le vescicole COPI mediano il trasporto retrogrado all'interno del Golgi e dal Golgi all'RE	621
•	Un recettore citosolico indirizza le proteine con una sequenza SKL <i>C</i> -terminale alla matrice		•	Il trasporto anterogrado attraverso il Golgi avviene tramite la maturazione delle cisterne	622
•	perossisomiale Le proteine della membrana e della matrice	595	14.4	Gli stadi tardivi della via secretoria	625
	perossisomiale sono incorporate attraverso vie differenti	596	•	Le vescicole rivestite da clatrina e le proteine adattatrici mediano il trasporto dal <i>trans</i> -Golgi	625
13.6	Il trasporto all'interno e all'esterno del nucleo	597	•	La dinamina è necessaria per il distacco delle vescicole di clatrina	626
•	Molecole grandi e piccole entrano ed escono dal nucleo attraverso i complessi del poro nucleare	597	•	I residui di mannosio 6-fosfato indirizzano gli enzimi residenti nei lisosomi	627
•	I recettori per il trasporto nucleare accompagnano nel nucleo le proteine che contengono segnali di localizzazione nucleare		•	Lo studio delle malattie da accumulo lisosomiale ha permesso di identificare componenti fondamentali della via di smistamento lisosomiale	e 628
•	Un secondo tipo di recettori per il trasporto nucleare accompagna fuori dal nucleo le proteine contenenti segnali di esportazione nucleare	600	•	L'aggregazione delle proteine nel <i>trans</i> -Golgi potrebbe avere una funzione nel processo di smistamento delle proteine alle vescicole secretorie regolate	629
•	Gli mRNA sono principalmente esportati dal nucleo attraverso un meccanismo		•	Alcune proteine subiscono elaborazioni proteolitiche dopo aver lasciato il <i>trans</i> -Golgi	629
RIPA	indipendente da Ran SSO ATTIVO	601 603	•	Nelle cellule polarizzate le proteine di membrana sono smistate alla regione apicale o basolaterale attraverso vie diverse	630
			14.5	L'endocitosi mediata da recettore	632
14	Traffico vescicolare, secrezione ed endocitosi	605	•	Le cellule assumono i lipidi dal sangue sotto forma di grandi e ben definiti complessi	
14.1	Le tecniche per lo studio della via secretoria	608		lipoproteici	632
•	Il trasporto di una proteina attraverso la via secretoria può essere analizzato nelle cellule vive	608	•	I recettori per ligandi macromolecolari contengon segnali di smistamento che li indirizzano verso l'endocitosi	no 634
•	L'impiego di mutanti di lievito ha permesso di definire le principali tappe e i componenti del trasporto vescicolare	609	•	Il pH acido degli endosomi tardivi provoca la dissociazione della maggior parte dei complessi recettore-ligando	i 635
•	I saggi di trasporto acellulari consentono di analizzare le singole tappe del trasporto vescicolare	610	•	L'endocitosi mediata da recettore può regolare negativamente i recettori per la segnalazione	635
14.2	I meccanismi molecolari per la gemmazione e la fusione delle vescicole	612	14.6	Lo smistamento di proteine di membrana e materiale citosolico ai lisosomi per la degradazione	637
•	L'assemblaggio di un rivestimento proteico promuove la formazione della vescicola e la selezione delle molecole cargo	612	•	Gli endosomi multivescicolari separano le proteine di membrana destinate alla membrana lisosomiale da quelle destinate alla degradazione	
•	Un gruppo conservato di proteine che funzionano come interruttori GTPasici controlla l'assemblaggio di diversi rivestimenti vescicolari	614	•	lisosomiale I retrovirus gemmano dalla membrana plasmatica attraverso un processo simile alla formazione	637 a
•	Le sequenze di indirizzamento nelle proteine cargo stabiliscono specifici contatti molecolari	615	•	degli endosomi multivescicolari La via autofagica recapita le proteine citosoliche	639
•	con le proteine di rivestimento Le GTPasi Rab controllano l'attracco delle vescicole alle membrane bersaglio	616	Ripas	o interi organuli ai lisosomi sso attivo	640 641
•	Le serie complementari di proteine SNARE mediano la fusione delle vescicole con le membrane bersaglio	618	15	Recettori, ormoni e segnalazione	
•	La dissociazione dei complessi SNARE dopo la fusione delle membrane è alimentata dall'idrolisi dell'ATP	619	15.1	Cellulare Le vie di trasduzione del segnale:	643
14.3		619	13.1	dal segnale extracellulare alla risposta cellulare	644
•	Le vescicole COPII mediano il trasporto di proteine dall'RE all'apparato di Golgi	620	•	Le molecole segnale possono agire localmente o a distanza	644

© 978-88-08-69993-0 Indice generale XV

•	Le vie di trasduzione del segnale possono produrre	e	•	Proteine G diverse sono attivate da recettori GPC	R
	nelle cellule cambiamenti rapidi a breve termine, lenti a lungo termine, o entrambi	645		diversi e a loro volta regolano proteine effettrici diverse	662
•	I recettori sono proteine allosteriche che attivano le vie di trasduzione del segnale	645	•	L'analisi dei GPCR ha permesso di identificare importanti ormoni umani	663
•	I recettori possono essere localizzati nel citosol, nel nucleo o sulla superficie della membrana cellulare	646	15.4	I GPCR che attivano o inibiscono l'adenilato ciclasi regolando il metabolismo	663
•	La maggior parte dei recettori lega un solo tipo di ligando o un gruppo di ligandi strettamente correlati	647	•	L'adenilato ciclasi è stimolata o inibita dai diversi complessi recettore-ligando	664
•	La maggior parte dei recettori lega i propri ligandi con alta affinità	648	•	Il cAMP attiva la proteina chinasi A liberandone le subunità inibitorie	665
•	I secondi messaggeri sono usati nella maggior parte delle vie di trasduzione del segnale	648	•	Il metabolismo del glicogeno è regolato dall'attivazione della PKA indotta da ormoni	666
•	Le proteine chinasi e fosfatasi partecipano alle vie di trasduzione del segnale con modifiche covalenti che attivano o inibiscono varie proteine	649	•	Nella via di degradazione del glicogeno indotta da cAMP e PKA avviene un'amplificazione del segnale	668
•	Le proteine che legano GTP sono spesso usate come interruttori molecolari nelle vie		•	L'attivazione della PKA mediata da cAMP provoca risposte differenti in cellule diverse	668
•	di trasduzione del segnale L'amplificazione del segnale e l'inibizione	650	•	CREB collega il cAMP e la PKA all'attivazione della trascrizione genica	668
	a feedback caratterizzano la maggior parte delle vie di trasduzione del segnale	651	•	Gli effetti del cAMP sono localizzati in specifiche regioni della cellula grazie a proteine di ancoraggio	669
15.2	Lo studio dei recettori di membrana e delle proteine di trasduzione del segnale	651	•	Vari meccanismi di feedback sopprimono la segnalazione della via GPCR/cAMP/PKA	670
•	I saggi di legame permettono di individuare i recettori e determinarne l'affinità per i ligandi Il raggiungimento della risposta cellulare massima	652	15.5	Gli ioni Ca ²⁺ nella regolazione della secrezione proteica e della contrazione	
	a una molecola segnale solitamente non richiede l'attivazione di tutti i recettori	653		muscolare	672
•	La sensibilità di una cellula ai segnali esterni è determinata dal numero di recettori di superficie	652	•	I prodotti dell'idrolisi del lipide di membrana fosfatidilinositolo 4,5-bisfosfato da parte della fosfolipasi C aumentano i livelli di Ca²+ citosolico	673
•	e dalla loro affinità per il ligando Alcuni analoghi chimici di molecole segnale	653	•	La liberazione di Ca $^{2+}$ dall'RE è innescata dall'IP $_{\!3}$	673
	sono usati per studiare i recettori e sono diffusamente impiegati come farmaci	653	•	Il trasporto del Ca ²⁺ dall'RE alla matrice mitocondriale mediato da IP ₃	675
•	I recettori possono essere purificati mediante tecniche di cromatografia di affinità	654	•	Il canale del Ca ²⁺ nella membrana plasmatica attivato dallo svuotamento delle riserve interne	676
•	I saggi di immunoprecipitazione e le tecniche di affinità possono essere usati per studiare l'attività delle proteine chinasi	654	•	I controlli a feedback nell'RE e il ricircolo del Ca ²⁺ nel citosol causano oscillazioni nella concentrazione del calcio citosolico	677
•	L'immunoprecipitazione delle chinasi per misurare l'attività enzimatica	654	•	Il DAG è un secondo messaggero che attiva la proteina chinasi C	677
•	La tecnica del Western blotting accoppiata all'utilizzo di un anticorpo monoclonale specifico		•	L'integrazione dei secondi messaggeri Ca²+ e cAMP regola la glicogenolisi	677
	per un amminoacido fosforilato in una proteina	655	15.6	La capacità visiva: come l'occhio	
•	Le proteine della trasduzione del segnale che legano GTP possono essere isolate per misurare la loro			percepisce la luce	678
•	attività con un saggio di pull down Le concentrazioni di ioni Ca ²⁺ liberi nella matrice	655	•	La luce attiva la rodopsina nei bastoncelli dell'occhio	678
	mitocondriale, nel reticolo endoplasmatico e nel citosol possono essere misurate con l'uso di proteine fluorescenti	656	•	L'attivazione della rodopsina induce la chiusura di canali cationici regolati da cGMP	680
15.3	Struttura e meccanismo dei recettori		•	L'amplificazione del segnale rende la via di trasduzione del segnale della rodopsina estremamente sensibile	681
•	Tutti i recettori accoppiati a proteine G	657	•	Il rapido spegnimento della via di trasduzione del segnale della rodopsina è essenziale per	(01
•	condividono la stessa struttura di base I recettori accoppiati a proteine G attivano lo scambio di GTP con GDP sulla subunità α di una proteina G eterotrimerica	658 660	•	la definizione temporale della visione Lo spegnimento del segnale dalla rodopsina R* attivata dalla luce avviene mediante la fosforilazio della rodopsina e il legame dell'arrestina	681 one 682
	*			1 0	

XVI Indice generale © 978-88-08-69993-0

•	Lo spegnimento del segnale dalla subunità $G_{\alpha t}$ ·GTP per idrolisi del GTP	682	•	La proteina chinasi B attivata induce molte risposte cellulari	705
•	I bastoncelli si adattano alla variazione dei livelli di luce ambientale con un traffico intracellulare di arrestina e trasducina	682	•	La via della Pl 3-chinasi è regolata negativamente dalla fosfatasi PTEN	705
Ripas	SSO ATTIVO	683	16.4	Citochine, recettori delle citochine e via di segnalazione JAK/STAT	706
	Fattori di crescita e citochine		•	Le citochine regolano lo sviluppo e la funzione di molti tipi di cellule	706
16	nel controllo dell'espressione genica	685	•	Il legame di una citochina al suo recettore attiva una o più tirosina chinasi JAK strettamente legate	708
16.1	Fattori di crescita e loro recettori tirosina chinasi	688	•	Le chinasi JAK fosforilano e attivano i fattori di trascrizione STAT	710
•	Il legame del ligando al dominio extracellulare di un RTK porta alla dimerizzazione e		•	La segnalazione dai recettori delle citochine è soppressa da più meccanismi	710
	all'attivazione della sua tirosina chinasi citosolica intrinseca	689	•	La regolazione a breve termine: le fosfotirosina fosfatasi	710
•	Omo- ed etero-oligomeri dei recettori dell'EGF legano i membri della famiglia dell'EGF	690	•	La regolazione a lungo termine: le proteine SOCS	710
•	Gli omodimeri dei recettori dell'EGF attivati da ligando	690	16.5	Famiglia dei fattori di crescita TGFβ, recettori serina chinasi e fattori di trascrizione Smad attivati	712
•	Gli eterodimeri dei recettori dell'EGF con HER2 Il legame del ligando al recettore dell'EGF	692	•	Le proteine TGFβ sono immagazzinate in forma inattiva nella matrice extracellulare	712
	e la dimerizzazione del recettore determinano la formazione di un dimero di chinasi asimmetrico attivo	693	•	Tre diversi recettori per il TGF β partecipano al legame del TGF β e all'attivazione della trasduzione del segnale	713
•	La trasduzione del segnale dopo l'attivazione degli RTK: i residui di fosfotirosina sul recettore legano diverse proteine con domini SH2	694	•	I recettori RI dei TGFβ attivati fosforilano i fattori di trascrizione Smad	714
•	L'endocitosi mediata da recettore e la segnalazione che porta alla degradazione lisosomiale degli RTK	695	•	Il complesso R-Smad/co-Smad attiva l'espressione di geni diversi in tipi cellulari differenti	716
16.2	La via di trasduzione del segnale Ras/MAP chinasi	696	•	I circuiti di feedback negativo limitano la segnalazione di TGF β /Smad	716
•	La GTPasi Ras opera come interruttore a valle della maggior parte degli RTK e dei recettori delle citochine	697	16.6	I tagli proteolitici regolati e sito-specifici nelle vie di segnalazione di Notch/Delta e degli EGF	717
•	I recettori tirosina chinasi sono collegati a Ras mediante proteine adattatrici	697	•	In seguito al legame di Delta, il recettore di Notch viene tagliato, rilasciando un fattore	
•	Il legame di Sos a una Ras inattiva provoca un cambiamento conformazionale che innesca lo scambio di GDP con GTP	697	•	di trascrizione Le metalloproteasi catalizzano il taglio di molte proteine di segnalazione dalla superficie cellulare	717 717
•	La segnalazione è trasferita dalla proteina Ras attiva a una cascata di chinasi proteiche che termina con la MAP chinasi	698	16.7	La degradazione proteasomica nelle vie di segnalazione di Wnt, Hedgehog e NF-кВ	719
•	La MAP chinasi regola l'attività di molti fattori di trascrizione che controllano i geni di risposta precoce	700	•	La segnalazione di Wnt impedisce la distruzione di un fattore di trascrizione da parte di un complesso proteico citosolico	719
•	Molteplici meccanismi di feedback circoscrivono l'attivazione della MAP chinasi		•	I gradienti di concentrazione della proteina Wnt sono essenziali per molte fasi dello sviluppo	720
•	Le proteine impalcatura separano una dall'altra, nella stessa cellula, le diverse vie di segnalazione		•	La segnalazione di Hedgehog rimuove la repressione dell'espressione dei geni bersaglio	722
	della MAP chinasi	701	•	L'elaborazione del precursore di Hh mediante taglio autoproteolitico	723
16.3	Le vie di trasduzione del segnale dei fosfoinositidi	703	•	I recettori di Hh Patched e Smoothened e le vie di segnalazione a valle sono stati inizialmente	
•	La fosfolipasi C_{γ} è attivata da molti RTK e recettori per le citochine	704		descritti grazie a studi genetici sullo sviluppo della drosofila	723
•	La PI 3-chinasi lega i recettori attivati generando fosfatidilinositoli 3-fosfati sulla membrana plasmatica e attivando diverse chinasi a valle	704	•	La regolazione a feedback della segnalazione di Hh La segnalazione di Hedgehog nei vertebrati richiede il ciglio primario	725 725

© 978-88-08-69993-0 Indice generale **XVII**

•	La degradazione di una proteina inibitrice attiva il fattore di trascrizione NF- κB	725	•	Le teste delle miosine si muovono con passi discreti lungo i filamenti di actina	757
•	Enormi complessi di segnalazione, i signalosomi, collegano molti recettori della superficie cellulare		17.6	I movimenti alimentati dalla miosina	758
Ripas	alle proteine a valle nella via di NF-κΒ sso attivo	726 729	•	I filamenti spessi di miosina e i filamenti sottili di actina scorrono l'uno sull'altro durante la contrazione dei muscoli scheletrici	758
17	Organizzazione cellulare e movimento: microfilamenti	731	•	La struttura del muscolo scheletrico viene mantenuta da proteine stabilizzanti e da proteine impalcatura	760
17.1	Microfilamenti e strutture di actina	734	•	La contrazione dei muscoli scheletrici è regolata dal Ca ²⁺ e da proteine che si legano all'actina	760
•	L'actina è una proteina antica, abbondante		•	Nelle cellule non muscolari l'actina e la miosina II formano fasci contrattili	762
•	e altamente conservata I monomeri di actina G si assemblano in lunghi polimeri elicoidali di actina F	734 735	•	Meccanismi dipendenti dalla miosina regolano la contrazione nelle cellule muscolari lisce e nelle cellule non muscolari	762
•	L'actina F ha una polarità strutturale e funzionale	735	•	La miosina V trasporta vescicole lungo i filamenti di actina	763
17.2	Il comportamento dinamico dei filamenti di actina	737	17.7	La migrazione cellulare: meccanismo,	766
•	La polimerizzazione <i>in vitro</i> dell'actina avviene in tre tappe	737	•	La migrazione cellulare coordina la generazione	700
•	I filamenti di actina si allungano più velocemente alle estremità (+) che alle estremità (-)	738		di forze con l'adesione cellulare e il riciclo di membrane	766
•	Il ricambio a mulinello dei filamenti di actina è accelerato dalla profilina e dalla cofilina	740	•	Cdc42, Rac e Rho: piccole proteine che legano il GTP e controllano l'organizzazione dell'actina	768
•	La timosina β_4 fornisce una riserva di actina per la polimerizzazione	741	•	La migrazione cellulare comporta la regolazione coordinata di Cdc42, Rac e Rho	770
•	Le proteine incappuccianti bloccano l'assemblaggio e il disassemblaggio a livello		•	Le cellule in migrazione sono guidate da molecole chemiotattiche	770
	delle estremità dei filamenti di actina	741	RIPAS	SSO ATTIVO	772
17.3	I meccanismi di assemblaggio dei filamenti di actina	742		Ouronimonione collulare e menimontes	
•	Le formine assemblano filamenti non ramificati	742	18	Organizzazione cellulare e movimento: microtubuli e filamenti intermedi	773
•	Il complesso Arp2/3 promuove la formazione di filamenti ramificati	743	18.1	Struttura e organizzazione dei microtubuli	774
•	I movimenti intracellulari possono essere alimentati dalla polimerizzazione dell'actina	745	•	Le pareti dei microtubuli sono strutture polarizzate costruite a partire da dimeri	
•	I microfilamenti sono necessari per l'endocitosi Le tossine che modificano il pool di monomeri	746	•	di αβ-tubulina I microtubuli si assemblano a partire dagli	775
	di actina sono un valido strumento per studiare il comportamento dinamico dell'actina	748		MTOC formando strutture diverse	777
17.4	L'organizzazione delle strutture cellulari basate sull'actina	748	18.2	Il comportamento dinamico dei microtubuli	779
•	Le proteine che formano legami crociati		•	I microtubuli singoli mostrano un'instabilità dinamica	779
•	organizzano l'actina in fasci e reticoli di filamenti Le proteine adattatrici attaccano i filamenti di actina alla membrana	749 750	•	L'assemblaggio localizzato e il meccanismo di <i>ricerca e cattura</i> contribuiscono a organizzare i microtubuli	782
17.5	Le miosine: i motori proteici associati ai filamenti di actina	752	•	I farmaci che influenzano la polimerizzazione della tubulina sono utili sia come strumenti sperimentali sia per curare alcune malattie	782
•	Le miosine hanno domini della testa, del collo e della coda con funzioni distinte	752	18.3	La regolazione della struttura e della dinamica dei microtubuli	783
•	Le miosine formano una grande famiglia di motori proteici meccanochimici	754	•	I microtubuli sono stabilizzati da proteine	
•	I cambiamenti conformazionali della testa della miosina accoppiano l'idrolisi di ATP al movimento	755	•	che si associano lateralmente alle loro pareti Le proteine +TIP regolano le proprietà e le funzioni dell'estremità (+) dei microtubuli	783 784

XVIII Indice generale © 978-88-08-69993-0

•	Altre proteine che legano le estremità	705	•	La citochinesi divide in due la cellula duplicata	810
•	promuovono il disassemblaggio dei microtubuli Anche le proteine che tagliano i microtubuli ne regolano la dinamica	785 785	•	Durante la mitosi le cellule vegetali riorganizzano i loro microtubuli e costruiscono una nuova parete cellulare	811
18.4	Chinesine e dineine: i motori proteici associati ai microtubuli	786	18.7	I filamenti intermedi: struttura e funzione	813
•	Gli organuli all'interno degli assoni sono	700	•	I filamenti intermedi si assemblano a partire da subunità dimeriche	814
	trasportati lungo i microtubuli in entrambe		•	I filamenti intermedi sono dinamici	814
•	le direzioni La chinesina 1 alimenta il trasporto assonale	786	•	Le proteine citoplasmatiche dei filamenti intermedi sono espresse in modo tessuto-specifico	o 814
	anterogrado delle vescicole verso l'estremità (+) dei microtubuli	787	•	Le lamine rivestono la membrana interna nucleare per fornire organizzazione e rigidità	
•	Le chinesine formano una grande famiglia di proteine che svolgono varie funzioni	788		al nucleo Le lamine si disassemblano in modo reversibile	817
•	La chinesina 1 è un motore processivo e regolato I motori dineinici trasportano organuli verso	789		mediante fosforilazione durante la mitosi	818
•	l'estremità (–) dei microtubuli Chinesine e dineine cooperano nel trasporto	791	18.8	Coordinazione e cooperazione tra gli elementi citoscheletrici	818
•	intracellulare di organuli Le modifiche della tubulina distinguono classi	792	•	Le proteine associate ai filamenti intermedi contribuiscono all'organizzazione cellulare	818
	differenti di microtubuli e la loro accessibilità ai motori proteici	794	•	Microfilamenti e microtubuli cooperano nel trasporto dei melanosomi	819
18.5	Ciglia e flagelli: le strutture di superficie basate sui microtubuli	795	•	Cdc42 coordina microtubuli e microfilamenti durante la migrazione cellulare	819
•	Ciglia e flagelli degli eucarioti contengono	733	•	L'estensione dei coni di crescita neuronali è coordinata da microfilamenti e microtubuli	820
	lunghe doppiette di microtubuli unite con ponti laterali da motori dineinici	795	RIPAS	SSO ATTIVO	821
•	Il battito di ciglia e flagelli è prodotto dallo scorrimento controllato delle doppiette esterne di microtubuli	797			
•	Il trasporto intraflagellare sposta materiali avanti e indietro lungo ciglia e flagelli	797	19	Ciclo cellulare della cellula eucariote	823
•	Le ciglia primarie sono organuli sensoriali delle cellule in interfase	798	19.1	Una visione d'insieme del ciclo cellulare	824
•	Le anomalie del ciglio primario sono causa di diverse malattie	799	•	Nella fase G_1 la cellula decide l'entrata nella fase S	825
18 6	La mitosi: il ruolo dei microtubuli	801	•	La fase G ₂ prepara le cellule per la mitosi e la divisione cellulare	825
•	I centrosomi si duplicano in una fase precoce		•	La mitosi e la citochinesi avvengono durante la fase M	826
•	del ciclo cellulare in preparazione della mitosi La mitosi può essere suddivisa in cinque fasi	801 801	19.2	Organismi modello e metodi di studio	
•	Il fuso mitotico è formato da tre classi di microtubuli	902		del ciclo cellulare	828
•	L'instabilità dinamica dei microtubuli aumenta enormemente durante la mitosi	802 803	•	I lieviti sono sistemi potenti per l'analisi genetica del ciclo cellulare	828
•	Durante la prometafase i cromosomi vengono catturati e orientati	805	•	Gli oociti e gli embrioni precoci di rana facilitano la caratterizzazione biochimica del macchinario del ciclo cellulare	828
•	I cromosomi duplicati vengono allineati da motori proteici e dalla dinamica		•	Lo studio delle cellule in coltura ha permesso di scoprire la regolazione del ciclo cellulare	020
	dei microtubuli	806		nei mammiferi	831
•	Il complesso passeggero cromosomico regola l'attacco dei microtubuli ai cinetocori	807	•	Per studiare il ciclo cellulare si usano molti strumenti diversi	831
•	Durante l'anafase A i cromosomi si spostano verso i poli mediante l'accorciamento dei microtubuli	808	19.3	Progressione del ciclo cellulare: circuiti a feedback e modifiche post-traduzionali	832
•	Durante l'anafase B, i poli si separano mediante l'azione combinata di chinesine e dineina	810	•	Le chinasi dipendenti da ciclina sono piccole	
•	Il fuso è centrato e orientato da una via di segnalazione dipendente da dineina-dinactina			proteine chinasi che richiedono una subunità regolatrice, composta da una ciclina, per la loro attività	833

© 978-88-08-69993-0 Indice generale XIX

•	Le cicline determinano l'attività delle CDK	834	19.7	I meccanismi di sorveglianza	
•	Le CDK sono regolate mediante fosforilazione,	027		nella regolazione del ciclo cellulare	864
•	che può essere attivante o inibitoria Gli inibitori delle CDK forniscono un controllo aggiuntivo dell'attività del complesso	837	•	Quando il DNA è compromesso, il sistema di risposta al danno del DNA arresta la progressione del ciclo cellulare e recluta	
	ciclina-CDK	838		i macchinari per la riparazione	864
•	I livelli di ciclina sono regolati dall'attivazione trascrizionale e dalla degradazione mediata dall'ubiquitina	839	•	Il punto di controllo dell'assemblaggio del fuso impedisce la segregazione dei cromosomi fino a quando non sono attaccati in modo accurato	
•	I domini che legano fosfoserina o fosfotreonina creano circuiti a feedback che coordinano l'attivazione delle CDK e la progressione del ciclo		40.0	al fuso mitotico	867
	cellulare	841	19.8	La meiosi: un tipo speciale di divisione cellulare	868
•	Gli studi di spettrometria di massa e con CDK geneticamente modificate hanno portato alla scoperta di nuovi substrati e funzioni		•	I segnali extracellulari e intracellulari regolano la formazione delle cellule germinali	869
	per le CDK	841	•	Diverse caratteristiche distinguono la meiosi dalla mitosi	869
19.4	Transizione dalla fase G ₁ alla fase S e replicazione del DNA	843	•	La ricombinazione e una subunità di coesina specifica per la meiosi sono necessarie	
•	La transizione G ₁ /S nel lievito gemmante è controllata dai complessi ciclina-CDK	843		per la segregazione specializzata dei cromosomi nella meiosi I	870
•	La transizione G ₁ /S nei metazoi coinvolge il controllo da parte della ciclina-CDK del fattore	0.4.4	•	Il co-orientamento dei cinetocori fratelli è fondamentale per la segregazione dei cromosomi nella meiosi I	872
•	di trascrizione E2F attraverso il suo regolatore Rb I segnali extracellulari governano l'ingresso nel ciclo cellulare	844	RIPAS	SSO ATTIVO	873
•	La degradazione di un inibitore delle CDK della fase S attiva la replicazione del DNA	845			
•	La replicazione a livello di ciascuna origine di replicazione viene avviata una sola volta	0.45	20	Integrazione delle cellule nei tessuti	875
	durante il ciclo cellulare	847	20.1	Le adesioni cellula-cellula e cellula-matrice:	:
•	I filamenti di DNA duplicati vengono collegati		20.1	una visione d'insieme	877
	tra loro durante la replicazione	849	•	una visione d'insieme Le molecole di adesione cellulare si legano	
19.5	tra loro durante la replicazione Transizione G ₂ /M e motore irreversibile della mitosi	849 851	•	una visione d'insieme Le molecole di adesione cellulare si legano l'una all'altra e alle proteine intracellulari La matrice extracellulare partecipa all'adesione,	877
	tra loro durante la replicazione Transizione G ₂ /M e motore irreversibile		•	una visione d'insieme Le molecole di adesione cellulare si legano l'una all'altra e alle proteine intracellulari La matrice extracellulare partecipa all'adesione, alla segnalazione e ad altre funzioni La comparsa di molecole di adesione versatili ha permesso l'evoluzione di diversi tessuti	877 877 879
	tra loro durante la replicazione Transizione G ₂ /M e motore irreversibile della mitosi L'attivazione improvvisa delle CDK mitotiche da parte di circuiti a feedback positivi avvia la mitosi Le CDK mitotiche promuovono la demolizione	851	•	una visione d'insieme Le molecole di adesione cellulare si legano l'una all'altra e alle proteine intracellulari La matrice extracellulare partecipa all'adesione, alla segnalazione e ad altre funzioni La comparsa di molecole di adesione versatili ha permesso l'evoluzione di diversi tessuti animali	877
19.5	tra loro durante la replicazione Transizione G ₂ /M e motore irreversibile della mitosi L'attivazione improvvisa delle CDK mitotiche da parte di circuiti a feedback positivi avvia la mitosi Le CDK mitotiche promuovono la demolizione dell'involucro nucleare I centrosomi si duplicano durante la fase S e si	851 851 852	•	una visione d'insieme Le molecole di adesione cellulare si legano l'una all'altra e alle proteine intracellulari La matrice extracellulare partecipa all'adesione, alla segnalazione e ad altre funzioni La comparsa di molecole di adesione versatili ha permesso l'evoluzione di diversi tessuti	877 877 879
19.5	tra loro durante la replicazione Transizione G ₂ /M e motore irreversibile della mitosi L'attivazione improvvisa delle CDK mitotiche da parte di circuiti a feedback positivi avvia la mitosi Le CDK mitotiche promuovono la demolizione dell'involucro nucleare I centrosomi si duplicano durante la fase S e si separano durante la mitosi Le CDK mitotiche, le chinasi polo-like e le chinasi	851 851 852 855	•	una visione d'insieme Le molecole di adesione cellulare si legano l'una all'altra e alle proteine intracellulari La matrice extracellulare partecipa all'adesione, alla segnalazione e ad altre funzioni La comparsa di molecole di adesione versatili ha permesso l'evoluzione di diversi tessuti animali Le molecole di adesione cellulare mediano la meccanotrasduzione	877 877 879 882
19.5	tra loro durante la replicazione Transizione G ₂ /M e motore irreversibile della mitosi L'attivazione improvvisa delle CDK mitotiche da parte di circuiti a feedback positivi avvia la mitosi Le CDK mitotiche promuovono la demolizione dell'involucro nucleare I centrosomi si duplicano durante la fase S e si separano durante la mitosi	851 851 852 855	•	una visione d'insieme Le molecole di adesione cellulare si legano l'una all'altra e alle proteine intracellulari La matrice extracellulare partecipa all'adesione, alla segnalazione e ad altre funzioni La comparsa di molecole di adesione versatili ha permesso l'evoluzione di diversi tessuti animali Le molecole di adesione cellulare mediano la meccanotrasduzione Giunzioni cellula-cellula e cellula-ECM	877 879 882 883
19.5	Transizione G ₂ /M e motore irreversibile della mitosi L'attivazione improvvisa delle CDK mitotiche da parte di circuiti a feedback positivi avvia la mitosi Le CDK mitotiche promuovono la demolizione dell'involucro nucleare I centrosomi si duplicano durante la fase S e si separano durante la mitosi Le CDK mitotiche, le chinasi polo-like e le chinasi Aurora guidano l'assemblaggio di un fuso mitoticche si attacca ai cinetocori dei cromosomi	851 852 855 i	• • • • • • • • • • • • • • • • • • • •	una visione d'insieme Le molecole di adesione cellulare si legano l'una all'altra e alle proteine intracellulari La matrice extracellulare partecipa all'adesione, alla segnalazione e ad altre funzioni La comparsa di molecole di adesione versatili ha permesso l'evoluzione di diversi tessuti animali Le molecole di adesione cellulare mediano la meccanotrasduzione Giunzioni cellula-cellula e cellula-ECM e loro molecole di adesione Le cellule epiteliali hanno superfici apicale,	877 879 882 883 884
•	Transizione G ₂ /M e motore irreversibile della mitosi L'attivazione improvvisa delle CDK mitotiche da parte di circuiti a feedback positivi avvia la mitosi Le CDK mitotiche promuovono la demolizione dell'involucro nucleare I centrosomi si duplicano durante la fase S e si separano durante la mitosi Le CDK mitotiche, le chinasi polo-like e le chinasi Aurora guidano l'assemblaggio di un fuso mitotic che si attacca ai cinetocori dei cromosomi condensati La condensazione cromosomica facilita la segregazione dei cromosomi	851 852 855 io 855 858	• • • • • • • • • • • • • • • • • • • •	una visione d'insieme Le molecole di adesione cellulare si legano l'una all'altra e alle proteine intracellulari La matrice extracellulare partecipa all'adesione, alla segnalazione e ad altre funzioni La comparsa di molecole di adesione versatili ha permesso l'evoluzione di diversi tessuti animali Le molecole di adesione cellulare mediano la meccanotrasduzione Giunzioni cellula-cellula e cellula-ECM e loro molecole di adesione Le cellule epiteliali hanno superfici apicale, laterale e basale distinte Molte interazioni cellula-cellula e cellula-ECM sono mediate da tre tipi di giunzioni Le caderine mediano le adesioni cellula-cellula nelle giunzioni aderenti e nei desmosomi	877 879 882 883 884
•	Transizione G ₂ /M e motore irreversibile della mitosi L'attivazione improvvisa delle CDK mitotiche da parte di circuiti a feedback positivi avvia la mitosi Le CDK mitotiche promuovono la demolizione dell'involucro nucleare I centrosomi si duplicano durante la fase S e si separano durante la mitosi Le CDK mitotiche, le chinasi polo-like e le chinasi Aurora guidano l'assemblaggio di un fuso mitotiche si attacca ai cinetocori dei cromosomi condensati La condensazione cromosomica facilita la segregazione dei cromosomi	851 852 855 i o 855 858	• • • 20.2	una visione d'insieme Le molecole di adesione cellulare si legano l'una all'altra e alle proteine intracellulari La matrice extracellulare partecipa all'adesione, alla segnalazione e ad altre funzioni La comparsa di molecole di adesione versatili ha permesso l'evoluzione di diversi tessuti animali Le molecole di adesione cellulare mediano la meccanotrasduzione Giunzioni cellula-cellula e cellula-ECM e loro molecole di adesione Le cellule epiteliali hanno superfici apicale, laterale e basale distinte Molte interazioni cellula-cellula e cellula-ECM sono mediate da tre tipi di giunzioni Le caderine mediano le adesioni cellula-cellula	877 877 879 882 883 884 884
•	Transizione G ₂ /M e motore irreversibile della mitosi L'attivazione improvvisa delle CDK mitotiche da parte di circuiti a feedback positivi avvia la mitosi Le CDK mitotiche promuovono la demolizione dell'involucro nucleare I centrosomi si duplicano durante la fase S e si separano durante la mitosi Le CDK mitotiche, le chinasi polo-like e le chinasi Aurora guidano l'assemblaggio di un fuso mitotic che si attacca ai cinetocori dei cromosomi condensati La condensazione cromosomica facilita la segregazione dei cromosomi Fuso mitotico, segregazione dei cromosomi e uscita dalla mitosi Il taglio delle coesine mediato dalla separasi avvia	851 852 855 60 855 858	• • • 20.2	una visione d'insieme Le molecole di adesione cellulare si legano l'una all'altra e alle proteine intracellulari La matrice extracellulare partecipa all'adesione, alla segnalazione e ad altre funzioni La comparsa di molecole di adesione versatili ha permesso l'evoluzione di diversi tessuti animali Le molecole di adesione cellulare mediano la meccanotrasduzione Giunzioni cellula-cellula e cellula-ECM e loro molecole di adesione Le cellule epiteliali hanno superfici apicale, laterale e basale distinte Molte interazioni cellula-cellula e cellula-ECM sono mediate da tre tipi di giunzioni Le caderine mediano le adesioni cellula-cellula nelle giunzioni aderenti e nei desmosomi Le integrine mediano le adesioni cellula-ECM, tra cui quelle degli emidesmosomi nelle cellule	877 879 882 883 884 884 885 887
19.5	Transizione G ₂ /M e motore irreversibile della mitosi L'attivazione improvvisa delle CDK mitotiche da parte di circuiti a feedback positivi avvia la mitosi Le CDK mitotiche promuovono la demolizione dell'involucro nucleare I centrosomi si duplicano durante la fase S e si separano durante la mitosi Le CDK mitotiche, le chinasi polo-like e le chinasi Aurora guidano l'assemblaggio di un fuso mitotiche si attacca ai cinetocori dei cromosomi condensati La condensazione cromosomica facilita la segregazione dei cromosomi Fuso mitotico, segregazione dei cromosomi e uscita dalla mitosi Il taglio delle coesine mediato dalla separasi avvia la segregazione dei cromosomi APC/C attiva la separasi attraverso	851 852 855 80 855 858 859	• • • 20.2	una visione d'insieme Le molecole di adesione cellulare si legano l'una all'altra e alle proteine intracellulari La matrice extracellulare partecipa all'adesione, alla segnalazione e ad altre funzioni La comparsa di molecole di adesione versatili ha permesso l'evoluzione di diversi tessuti animali Le molecole di adesione cellulare mediano la meccanotrasduzione Giunzioni cellula-cellula e cellula-ECM e loro molecole di adesione Le cellule epiteliali hanno superfici apicale, laterale e basale distinte Molte interazioni cellula-cellula e cellula-ECM sono mediate da tre tipi di giunzioni Le caderine mediano le adesioni cellula-cellula nelle giunzioni aderenti e nei desmosomi Le integrine mediano le adesioni cellula-ECM, tra cui quelle degli emidesmosomi nelle cellule epiteliali Le giunzioni strette sigillano le cavità del corpo	877 879 882 883 884 884 885 887

XX Indice generale © 978-88-08-69993-0

•	I nanotubi di membrana possono mediare l'accoppiamento metabolico e trasferire organuli tra le cellule animali	898	•	I plasmodesmi mettono direttamente in comunicazione i citosol di cellule adiacenti Le molecole necessarie per l'adesione e	926
20.3	La matrice extracellulare parte I: la lamina basale	899	Dyna	la meccanotrasduzione nelle piante sono diverse rispetto a quelle degli animali	928 929
•	La lamina basale è un elemento fondamentale per l'assemblaggio delle cellule in tessuti	900	KIPAS	SSO ATTIVO	929
•	La laminina, una proteina multiadesiva della matrice, facilita la formazione di legami crociati tra i componenti della lamina basale	901	21	Risposta all'ambiente extracellulare	931
•	Il collagene di tipo IV forma foglietti ed è uno dei principali componenti strutturali della lamina basale	901	21.1	La regolazione del livello di glucosio nel sangue	933
•	Il perlecano, un proteoglicano, crea legami crociati tra i componenti della lamina basale e i recettori della superficie cellulare	904	•	Gli ormoni insulina e glucagone lavorano insieme per stabilizzare il livello di glucosio nel sangue	933
20.4	La matrice extracellulare parte II: il tessuto connettivo	905	•	Un aumento di glucosio ematico stimola la secrezione di insulina dalle cellule β delle isole pancreatiche	934
•	I collageni fibrillari sono le principali proteine fibrose dell'ECM dei tessuti connettivi	905	•	Nelle cellule muscolari e adipose l'insulina stimola la fusione delle vescicole di GLUT4	733
•	Il collagene fibrillare viene secreto e assemblato in fibrille all'esterno della cellula	906		con la membrana plasmatica e l'assunzione di glucosio	934
•	I collageni di tipo I e II si associano ai collageni non fibrillari per formare strutture differenti	907	•	Nel fegato l'insulina inibisce la sintesi di glucosio, accelera il tasso di glicolisi e induce il deposito	
•	I proteoglicani e i loro GAG costituenti svolgono diverse funzioni nell'ECM	908	24.2	di glucosio in glicogeno	936
•	Lo ialuronano resiste alla compressione, facilita la migrazione cellulare e conferisce alla cartilagine le proprietà di gel	910		L'integrazione dei segnali di crescita cellulare con i livelli di nutrienti ed energia	937
•	Le fibronectine uniscono le cellule alla matrice extracellulare, influenzando la forma, il differenziamento e il movimento cellulare	011	•	Il complesso attivo mTORC1 innesca diverse vie anaboliche di trasduzione del segnale	938
•	Le fibre elastiche consentono a molti tessuti di andare incontro a ripetuti allungamenti e accorciamenti	911 914	•	L'attivazione della chinasi mTORC1 richiede amminoacidi, un elevato rapporto ATP:AMP e l'attivazione di vie di trasduzione del segnale a valle dei recettori per fattori di crescita	939
•	Le metalloproteasi rimodellano e degradano la matrice extracellulare	915	21.3	La risposta ai cambiamenti dei livelli di colesterolo e di acidi grassi insaturi	942
20.5	Le interazioni adesive in cellule mobili e immobili	916	•	La biosintesi degli acidi grassi e del colesterolo così come l'assunzione del colesterolo sono	
•	Le integrine mediano l'adesione e trasmettono segnali tra le cellule e il loro ambiente tridimensionale	916	•	regolate a livello di trascrizione genica La proteina del reticolo endoplasmatico SCAP	943
•	Il movimento cellulare dipende dalla regolazione dei processi di adesione e segnalazione mediati	910	•	percepisce il livello di colesterolo cellulare La proteolisi intramembrana regolata di SREBP nel Golgi rilascia un fattore di trascrizione bHLH	943
•	dall'integrina Le connessioni tra l'ECM e il citoscheletro	917		che mantiene i giusti livelli di fosfolipidi e colesterolo	943
•	sono difettose nella distrofia muscolare Le IgCAM mediano l'adesione cellula-cellula	921	21.4	La risposta a bassi livelli di ossigeno	945
•	nel tessuto nervoso e in altri tessuti Il movimento dei leucociti nei tessuti è regolato	922	•	Il gene dell'eritropoietina è indotto a bassi livelli di ossigeno	945
	da una precisa sequenza temporale di interazioni di adesione	922	•	La percezione dell'ossigeno e la regolazione dell'espressione di Hif-1α sono funzioni tipiche	
20.6	I tessuti vegetali: struttura e funzione	924	•	di tutte le cellule nucleate di mammifero I livelli di ossigeno ambientali inibiscono	945
•	La parete della cellula vegetale è formata da lamin di fibrille di cellulosa in una matrice di		•	la funzione e la stabilità di Hif-1α L'aggiunta post-traduzionale di un residuo	946
•	glicoproteine e polisaccaridi L'allentamento della parete cellulare permette la crescita della cellula vegetale	925 926		di arginina regola una famiglia conservata di fattori di crescita sensibili all'ossigeno nelle piante e negli animali	947

© 978-88-08-69993-0 Indice generale **XXI**

21.5	La risposta a temperature elevate	948	•	Nei diversi tessuti, le cellule staminali risiedono	
•	La risposta allo shock termico è indotta	0.40	•	in nicchie Le cellule staminali germinali danno origine a	977
•	da catene polipeptidiche non ripiegate La risposta allo shock termico è regolata	949		spermatozoi e oociti in molti organismi	977
	dai fattori dello shock termico, che sono presenti in tutti gli eucarioti e comprendono HSF1		•	Le cellule staminali intestinali rigenerano di continuo il tessuto epiteliale	979
21.6	nella specie umana La percezione del giorno e della notte:	949	•	Wnt e le R-spondine sono determinanti per la funzione delle cellule staminali intestinali Lgr5 ⁺	980
	i ritmi circadiani	951	•	Le cellule staminali ematopoietiche formano tutte le cellule del sangue e del sistema immunitario	982
•	L'orologio circadiano nella maggior parte degli organismi dipende da un circuito a feedback negativo	952	•	La caratterizzazione delle cellule staminali ematopoietiche tramite trapianto	982
•	L'orologio circadiano nei batteri: una soluzione diversa	953	•	Le nicchie delle cellule staminali ematopoietiche e di molti progenitori ematopoietici	984
•	Il nucleo soprachiasmatico: l'orologio molecolare principale nei mammiferi	954	•	La regolazione della produzione di cellule ematopoietiche differenziate	985
21.7	Percezione e risposta all'ambiente fisico	955	•	I meristemi costituiscono le nicchie delle cellule staminali vegetali	986
•	La cascata chinasica di Hippo nella drosofila e nei mammiferi	955	•	Un circuito a feedback negativo mantiene la dimensione della popolazione di cellule staminali apicali del germoglio	986
•	La regolazione della cascata chinasica di Hippo da parte delle interazioni cellulari con la matrice extracellulare e della tensione sui filamenti		•	Il meristema della radice è simile a quello del germoglio per struttura e funzione	987
•	di actina La via di segnalazione di Hippo nell'embriogenesi	957 i 958	22.3	Meccanismi della polarità cellulare e divisione cellulare asimmetrica	988
RIPA	precoce sso attivo	960	•	Il programma intrinseco di polarità si basa su un circuito a feedback positivo che coinvolge Cdc42	989
22	Cellule staminali, asimmetria cellulare		•	La polarizzazione cellulare che precede la divisione segue una serie comune di passaggi	989
22.1	e morte cellulare regolata Sviluppo embrionale nei mammiferi,	963	•	Il traffico polarizzato di membrana permette alla cellula di lievito di crescere in maniera asimmetrica durante l'accoppiamento	991
	staminali embrionali e pluripotenti indotte	965	•	Le proteine Par regolano l'asimmetria cellulare	
•	La fecondazione ripristina il genoma diploide generando lo zigote	965	•	nell'embrione del nematode Le proteine Par e altri complessi di polarità	992
•	La segmentazione dell'embrione di mammifero determina i primi eventi di differenziamento	966	•	sono coinvolti nella polarità delle cellule epiteliali La via di trasduzione della polarità cellulare	
•	Le cellule pluripotenti della massa cellulare interna sono la fonte delle cellule staminali embrionali	966	•	planare orienta le cellule in un epitelio Le proteine Par sono coinvolte nella divisione asimmetrica delle cellule staminali	996 998
•	Diversi fattori controllano la pluripotenza delle cellule ES	967	22.4	Morte cellulare e sua regolazione	1000
•	La clonazione degli animali dimostra che i cambiamenti epigenetici durante il	0.60	•	La morte cellulare programmata avviene principalmente mediante apoptosi	1001
•	differenziamento possono essere invertiti Le cellule somatiche possono generare cellule iPS	969	•	Al processo di apoptosi partecipano proteine conservate durante l'evoluzione	1002
•	Le cellule iPS specifiche per la persona possono essere utili per il trattamento di molte patologie	970 971	•	Le caspasi amplificano il segnale iniziale di apoptosi e degradano importanti proteine cellulari	1004
•	Le cellule ES e iPS possono generare cellule umane differenziate funzionali	971	•	La fosfatidilserina: il segnale "mangiami" sulla superficie delle cellule apoptotiche	1004
22.2	Cellule staminali e nicchie degli organismi pluricellulari	975	•	Le neurotrofine promuovono la sopravvivenza dei neuroni	1005
•	Le planarie adulte contengono cellule staminali	913	•	I mitocondri svolgono un ruolo centrale nella regolazione dell'apoptosi nelle cellule	
•	pluripotenti Le cellule staminali somatiche multipotenti	975	•	dei vertebrati Le proteine proapoptotiche Bax e Bak formano	1007
	generano cellule staminali e cellule che si differenziano	976		pori e aperture nella membrana mitocondriale esterna	1007

XXII Indice generale © 978-88-08-69993-0

	presinaptico sono presenti vescicole sinaptiche cariche nettitori 1042
di Bad, una proteina regolatrice proapoptotica dei neurotrasi	Ca ²⁺ induce il rilascio mettitori 1043
	legante il calcio regola la fusione e sinaptiche con la membrana 1044
dal fattore di necrosi tumorale, dal ligando non possono i	utanti privi della dinamina riciclare le vescicole sinaptiche 1045
RIPASSO ATTIVO 1013 è interrotta da	ne del segnale a livello delle sinapsi alla degradazione o dalla dei neurotrasmettitori 1046
23 Cellule del sistema nervoso 1015 acetilcolina pr	canali cationici dipendenti da rovoca la contrazione muscolare 1046
nicotinico per 23.1 Neuroni e glia: gli elementi costitutivi alla formazior	e le subunità del recettore l'acetilcolina contribuiscono ne del canale ionico 1047
	vose integrano i segnali in entrata ecisioni "tutto o nulla" per
	otenziale d'azione 1048
Le informazioni si propagano lungo l'assone Le giunzioni c	comunicanti permettono one diretta tra neuroni iali 1049
attraverso le sinapsi 1018 tatto, dolore	ne dell'ambiente: e, gusto e olfatto 1050
 Il sistema nervoso utilizza circuiti di trasmissione del segnale formati da molteplici tipi di neuroni 1019 I meccanocett 	tori sono canali cationici regolati 1050
	ori del dolore sono canali
	ri primari sono percepiti ellulari in ciascun calice gustativo 1052
23.2 Canali ionici voltaggio-dipendenti rilevano le sos	ori accoppiati a proteine G stanze odorose 1055
• Il potenziale d'azione ha un valore vicino a E_{Na} di recettore pe	olfattivo esprime un solo tipo er gli stimoli olfattivi 1056
ed è dovuto all'ingresso di ioni Na ⁺ 1025 Le aperture e chiusure sequenziali dei canali 23.5 Formazione	e conservazione dei ricordi 1059
del K+ e del Na+ voltaggio-dipendenti generano i potenziali d'azione	rmano cambiando il numero e sinapsi tra neuroni 1059
T	è necessario per la formazione
Tutti i canali ignici valtaggia dinandanti hanna	ınismi molecolari contribuiscono
• Le α-eliche S4 sensibili al voltaggio si spostano La formazione	e della memoria a lungo termine ressione genica 1062
• Lo spostamento del segmento di inattivazione del canale all'interno del poro aperto blocca il flusso ionico RIPASSO ATTIVO	1064
La mielinizzazione aumenta la velocità	ti molecolari
Negli assoni mielinici i potenziali d'azione "saltano" di nodo in nodo	
 Due tipi di glia formano le guaine mieliniche Canali ionici attivati dalla luce e optogenetica 1034 Una panoral di difesa del 	mica dei meccanismi l'ospite 1067
I patogeni ent	rano nel corpo attraverso i replicano in vari siti 1067
 La formazione delle sinapsi richiede l'assemblaggio di strutture presinaptiche e postsinaptiche 1038 Le cellule del se e adattativo ci 	sistema immunitario innato rcolano nel corpo e si localizzano
1 1 1	fonodi 1068 eccaniche e chimiche costituiscono o di difesa contro i patogeni 1069

© 978-88-08-69993-0 Indice generale **XXIII**

•	L'immunità innata fornisce una seconda linea di difesa	1070	•	I geni del TCR sono riarrangiati in modo simile ai geni delle immunoglobuline	1100
•	L'infiammazione è una risposta complessa al danno che coinvolge l'immunità innata		•	Molti dei residui variabili del TCR sono codificati nelle giunzioni tra i segmenti genici V, D e J	1100
•	e quella adattativa e aiuta a distruggere i patogeni L'immunità adattativa, la terza linea di difesa, presenta alcune peculiarità	1072 1074	•	La trasmissione del segnale mediata dai recettori specifici per l'antigene induce la proliferazione	1102
24.2	Le immunoglobuline: struttura e funzione		•	e il differenziamento dei linfociti T e B I linfociti T in grado di riconoscere le molecole MHC maturano tramite un processo di selezione	1102
•	Le immunoglobuline hanno una struttura			positiva e negativa	1102
	conservata che consiste di catene pesanti e leggere	1075	•	I linfociti T scelgono il percorso di sviluppo in CD4 o CD8 nel timo	1105
•	Esistono numerosi isotipi di immunoglobuline, ognuno con funzioni diverse	1075	•	I linfociti T necessitano di due tipi di segnale per la loro piena attivazione	1105
•	Ogni linfocita B naïve produce un'immunoglobulina unica	1077	•	I linfociti T citotossici presentano il corecettore CD8 e sono specializzati per uccidere	1105
•	I domini immunoglobulinici hanno un ripiegamento caratteristico composto da due foglietti β stabilizzati da un legame disolfuro	1078	•	I linfociti T secernono citochine che forniscono i segnali ad altre cellule del sistema immunitario	1106
•	La regione costante di un'immunoglobulina definisce le sue proprietà funzionali	1079	•	I linfociti T helper si dividono in sottoinsiemi distinti in base alle citochine prodotte e ai marcatori espressi sulla superficie	1107
24.3	Generazione della diversità anticorpale e maturazione dei linfociti B	1080	•	Le cellule linfoidi innate regolano l'infiammazione e la risposta immunitaria complessiva	1108
•	Una catena leggera funzionale richiede l'assemblaggio di segmenti genici V e J	1081	•	I leucociti si muovono in risposta ai segnali chemiotattici forniti dalle chemochine	1108
•	I riarrangiamenti del locus della catena pesante coinvolgono segmenti genici V, D e J	1082	24.6	La collaborazione delle cellule del sistema immunitario nella risposta adattativa	1109
•	Le ipermutazioni somatiche permettono la generazione e la selezione di anticorpi con affinità più alta	1084	•	I recettori Toll-like riconoscono molti profili macromolecolari dei patogeni	1109
•	Lo sviluppo dei linfociti B richiede l'input da un recettore delle cellule pre-B	1084	•	Il coinvolgimento dei recettori Toll-like porta all'attivazione delle cellule che presentano	
•	Durante una risposta adattativa, i linfociti B passano dal produrre Ig legate alla membrana	1006	•	l'antigene La produzione di anticorpi con alta affinità	1111
•	al produrre Ig secrete I linfociti B possono cambiare l'isotipo delle immunoglobuline che producono	1086 1086	•	richiede la collaborazione tra linfociti B e T I vaccini inducono immunità protettiva contro diversi patogeni	1112
24.4	MHC e presentazione dell'antigene	1088	•	Il sistema immunitario è una difesa contro	
	L'MHC determina l'abilità di due persone		Ridas	il cancro SSO ATTIVO	1115 1116
•	della stessa specie non imparentate di accettare o rigettare i trapianti	1088	IdiA	NO ATTIVO	1110
•	L'attività dei linfociti T citotossici è specifica per l'antigene e limitata dall'MHC	1089	25	Aspetti molecolari e cellulari del cancro	1119
•	I linfociti T con diverse proprietà funzionali sono guidati da due diverse classi di molecole MHC	1089	25.1	Le differenze tra cellule tumorali	4424
•	Le molecole MHC sono altamente polimorfiche, si legano agli antigeni peptidici e interagiscono con il recettore dei linfociti T	1091	•	e cellule normali Il corredo genetico della maggior parte	1121
•	Nella presentazione dell'antigene, i frammenti proteici formano complessi con i prodotti MHC		•	delle cellule tumorali è notevolmente alterato La proliferazione incontrollata è un tratto	1122
•	e sono esposti sulla superficie cellulare La via dell'MHC di classe I presenta gli antigeni	1092	•	universale del cancro Le principali funzioni cellulari sono	1122
•	citosolici La via dell'MHC di classe II presenta gli antigeni	1093		fondamentalmente alterate nelle cellule tumorali Le cellule tumorali formano interazioni	1123
-	rilasciati nella via endocitica	1096	•	cellula-cellula alterate che generano organi eterogenei	1124
24.5	I linfociti T: caratteristiche, recettori e sviluppo	1099	•	La crescita del tumore richiede la formazione di nuovi vasi sanguigni	1125
•	La struttura del recettore dei linfociti T somiglia alla porzione F(ab) delle immunoglobuline	1099	•	Invasione e metastasi sono fasi tardive nella tumorigenesi	1125

XXIV Indice generale © 978-88-08-69993-0

25.2	Le basi genetiche e genomiche del cancro	1127	•	Molte mutazioni oncogeniche attivano	
•	Gli agenti cancerogeni danneggiano il DNA direttamente o indirettamente	1127	•	costitutivamente le proteine di trasduzione del segnale Le vie di controllo della crescita regolano	1139
•	Alcuni agenti cancerogeni sono stati collegati a tumori specifici	1128		l'ingresso nel ciclo cellulare	1139
•	Le sindromi familiari che causano la perdita dei meccanismi di riparazione del DNA possono portare al cancro	1129	•	Una produzione inappropriata di fattori di trascrizione nucleari può indurre la trasformazione	1140
•	Le mutazioni somatiche nelle vie di risposta al danno al DNA sono oncogeniche	1130	•	Le aberrazioni nelle vie di segnalazione che controllano lo sviluppo sono associate a molti tumori	1142
•	Il sequenziamento del genoma tumorale rivela un enorme diversità di mutazioni somatiche	1130	•	La ricostruzione sperimentale del modello multi-hit per il cancro	1143
•	Gli oncogeni sono stati scoperti grazie alla loro associazione con virus tumorali	1131	•	La sequenza temporale delle mutazioni oncogeniche può essere tracciata nel cancro	
•	È possibile attivare singoli driver oncogenici tramite riarrangiamenti cromosomici	1132		del colon	1143
•	La predisposizione ereditaria al cancro ha permesso l'identificazione di alcuni driver		•	Lo sviluppo del cancro può essere studiato in modelli animali	1145
•	oncogenici	1133	•	La biologia molecolare della cellula sta cambiando il modo in cui i tumori sono	
•	Le mutazioni driver oncogeniche sono state identificate in molti geni	1134		diagnosticati e trattati	1146
•	Le mutazioni driver oncogeniche possono essere identificate confrontando i genomi tumorali	1134	25.4	L'elusione dei processi di morte cellulare programmata e sorveglianza immunitaria	1147
•	I driver oncogenici possono essere mutazioni con guadagno di funzione o con perdita di funzione	1134	•	Le mutazioni driver oncogeniche permettono alle cellule tumorali di sfuggire all'apoptosi	1147
•	I geni oncosoppressori e gli oncogeni spesso operano nella stessa via di trasduzione del segnale	1135	•	La proteina p53 può attivare sia il punto di controllo sia l'apoptosi in risposta al danno al DNA	1147
•	I microRNA possono promuovere o inibire la tumorigenesi	1136	•	Il sistema immunitario è una seconda linea di difesa contro lo sviluppo del cancro	1148
•	Le modifiche epigenetiche possono contribuire alla tumorigenesi	1137	•	Microambiente tumorale e immunocorrezione limitano la capacità del sistema immunitario di identificare e uccidere i tumori	1149
25.3	La crescita e lo sviluppo incontrollati della cellula possono avviare la tumorigenesi	1138	•	L'attivazione del sistema immunitario è un'importante possibilità per la terapia del cancro	1151
•	Le mutazioni dei recettori possono causare		RIPA	SSO ATTIVO	1153
	la proliferazione in assenza di fattori di crescita esterni	1138	Indic	e analitico	1154