

University of Manchester

Nick Greeves

University of Liverpool

Stuart Warren

University of Cambridge

Chimica organica

Edizione italiana sulla seconda in lingua inglese

Titolo originale: Organic Chemistry, Second Edition by Jonathan Clayden, Nick Greeves, and Stuart Warren Jonathan Clayden, Nick Greeves, and Stuart Warren 2012 Published in the United States by Oxford University Press Inc., New York

Organic Chemistry, Second Edition was originally published in English in 2012. This translation is published by arrangement with Oxford University Press. PICCIN NUOVA LIBRARIA S.p.A. is solely responsible for this translation from the original work and Oxford University Press shall have no liability for any errors, omissions or inaccuracies or ambiguities in such translation or for any losses caused by reliance thereon.

L'edizione originale in lingua inglese di *Organic Chemistry*, Second Edition è stata pubblicata nel 2012. Questa traduzione è stata pubblicata su licenza di Oxford University Press. PICCIN NUOVA LIBRARIA S.p.A. è responsabile della traduzione dell'opera originale e Oxford University Press non è responsabile per eventuali errori, omissioni, sviste o ambiguità della traduzione o per eventuali danni da essa derivanti.

Opera coperta dal diritto d'autore - Tutti i diritti sono riservati

Questo testo contiene materiale, testi ed immagini, coperto da copyright e non può essere copiato, riprodotto, distribuito, trasferito, noleggiato, licenziato o trasmesso in pubblico, venduto, prestato a terzi, in tutto o in parte, o utilizzato in alcun altro modo o altrimenti diffuso, se non previa espressa autorizzazione dell'editore. Qualsiasi distribuzione o fruizione non autorizzata del presente testo, così come l'alterazione delle informazioni elettroniche, costituisce una violazione dei diritti dell'editore e dell'autore e sarà sanzionata civilmente e penalmente secondo quanto previsto dalla L. 633/1941 e ss.mm.

AVVERTENZA

Molte delle sostanze e delle reazioni chimiche descritte o rappresentate in questo libro sono pericolose. Non tentate alcun esperimento illustrato nel testo, a meno che non vi troviate in un laboratorio adeguato e sotto supervisione di un esperto.

Poiché le scienze sono in continua evoluzione, l'Editore non si assume alcuna responsabilità per qualsiasi lesione e/o danno dovesse venire arrecato a persone o beni per negligenza o altro, oppure uso od operazioni di qualsiasi metodo, prodotto, istruzione o idea contenuto in questo libro. L'Editore raccomanda soprattutto la verifica autonoma della diagnosi e del dosaggio dei medicinali, attenendosi alle istruzioni per l'uso e controindicazioni contenute nel foglietto illustrativo.

In copertina: foto di Lucy Kral (https://unsplash.com/it/foto/IgpRtRx1i18)

ISBN 978-88-299-3233-7

Stampato in Italia

Prefazione alla seconda edizione

Gli studenti di chimica non hanno l'assillo della ricerca di un testo di supporto all'apprendimento della chimica organica durante tutto il corso di studi universitari. Gli scaffali delle librerie universitarie offrono generalmente la scelta tra almeno una mezza dozzina di testi — tutti dal titolo "Chimica Organica" e tutti con il ragguardevole numero di più di mille pagine. Un più attento esame di questi volumi ben presto delude le aspettative di varietà dei contenuti. Pressoché senza eccezioni, i testi di chimica organica generale sono stati scritti per essere di supporto ai tradizionali corsi del secondo anno delle università americane, precisamente allineati con quelle che sono le relative esigenze. Ben poca libertà è lasciata agli autori di questi testi di rinvigorire la trattazione della chimica con nuove idee.

Noi abbiamo voluto scrivere un libro la cui organizzazione prende origine dallo sviluppo di idee piuttosto che essere dettata da una presentazione sequenziale di fatti. Noi crediamo soprattutto che gli studenti possano trarre beneficio da un libro che li guidi da concetti a loro familiari ad altri che non lo sono non soltanto incoraggiandoli a *conoscere*, ma piuttosto a *capire* e a capire *perché*. Siamo stati spronati a questo dalla organizzazione dei corsi di chimica delle migliori moderne università, che seguono tale percorso: dopotutto questo è come la stessa scienza si sviluppa. Ci siamo anche resi conto che così facendo avremmo potuto sin dall'inizio mettere in relazione la chimica che trattiamo con i suoi due principali aspetti: quello che è noto come chimica della vita e la chimica che viene praticata dai chimici per risolvere i problemi reali in laboratorio.

Abbiamo mirato ad un approccio che possa avere un senso e una attrattiva per gli studenti di oggi. Questo, tuttavia, richiede di dare un taglio alle tradizioni di lunga data per i libri di testo. La via migliore per scoprire come qualcosa funziona è smontarla e poi rimetterla di nuovo insieme, e così il punto di partenza sono gli strumenti per esprimere le idee chimiche: diagrammi strutturali e frecce ricurve. La chimica organica è un campo assai vasto per un apprendimento, anche in piccola parte, mnemonico; con questi strumenti gli studenti possono rapidamente comprendere il senso di quella chimica che potrebbe per loro risultare non familiare nei particolari mettendola in relazione con quello che conoscono e comprendono. Il ricorso alle frecce ricurve e l'esposizione della chimica organica sulla base dei meccanismi di reazione consentono di discutere gli aspetti meccanicistici (e degli orbitali) di semplici reazioni (per esempio l'addizione al gruppo carbonilico C=O) prima di passare a quelle più complesse e articolate (come le reazioni S_v 1 e S_v 2).

Gli argomenti più complessi vengono affrontati secondo l'opportuna tempistica, ma abbiamo deciso di omettere deliberatamente dettagliate discussioni di reazioni poco note e di limitato interesse o di varianti di reazioni che consistono semplicemente in uno stadio della logica del meccanismo di reazione rispetto alla trattazione generale. In maniera similare abbiamo evitato di esumare principi e regole (dal principio di Le Châtelier passando alle regole di Markovnikov e Saytseff, al principio del minimo movimento e simili) per spiegare aspetti che possono essere meglio compresi sulla base dei concetti unificanti e fondamentali della termodinamica e dei meccanismi di reazione.

Tutta la scienza deve essere sostenuta dall'evidenza, ed il supporto alle affermazioni della chimica organica è fornito dalla spettroscopia. Per questo motivo descriviamo allo studente i fatti che la spettroscopia ci racconta (Capitolo 3) prima di cercare di spiegarli (Capitolo 4) e di utilizzarli per dedurre i meccanismi di reazione (Capitolo 5). In modo particolare l'NMR costituisce una parte significativa di quattro capitoli del libro e le evidenze ricavate dall'NMR sostengono la correttezza di molte delle discussioni attraverso tutto il testo. Analogamente, i principi meccanicistici esposti nel Capitolo 5, fermamente fondati sulle teorie degli orbitali del Capitolo 4, sono di sostegno a tutte le discussioni sulle nuove reazioni trattate nel testo.

Abbiamo presentato la chimica come qualcosa la cui essenza è il vero, di esattezza comprovata, ma che può essere abbellita con opinioni e suggerimenti che non tutti i chimici approverebbero. Il nostro scopo è evitare dogmi e promuovere una salutare valutazione delle evidenze, e, quando se ne presenta l'occasione, siamo lieti di lasciare che i lettori traggano le proprie conclusioni. La Scienza è importante non solo per gli scienziati, ma anche per la società. Il nostro scopo è stato quello di scrivere un libro che mantenga esso stesso dal punto di vista scientifico "un piede all'interno dei limiti di ciò che è noto e l'altro proprio all'esterno" e incoraggi il lettore a fare lo stesso.

Gli autori sono in debito verso i molti lettori critici e di sostegno alla prima edizione di questo libro, che ci hanno fornito negli ultimi dieci anni un flusso di commenti e correzioni, cordiali incoraggiamenti e severe critiche. Tutto è stato accuratamente annotato e nulla è stato tralasciato nel corso della scrittura di questa edizione. In molti casi questi contributi ci hanno aiutato a correggere errori o apportare miglioramenti al testo. Vogliamo anche ringraziare il supporto e la guida dell'organizzazione editoriale della UOP, e ancora una volta riconoscere il rilevante contributo di colui che per primo coltivò la visione che la chimica organica potesse essere insegnata con un libro come questo, Michael Rodgers. Il tempo speso nell'allestimento di questa edizione è stato reso disponibile unicamente dalla sopportazione delle nostre famiglie, degli amici e del gruppo di ricerca e vogliamo ringraziare tutti per la loro pazienza e la loro comprensione.

Modifiche di questa edizione

Nei dieci anni trascorsi dalla pubblicazione della prima edizione di questo libro è risultato evidente come alcuni aspetti del nostro approccio originale richiedessero una revisione e alcuni capitoli un aggiornamento con l'introduzione di argomenti che hanno assunto importanza nel corso di questi anni, mentre altri sono stati ridotti. Abbiamo tenuto in considerazione le critiche espresse da molti lettori relative alla trattazione eccessivamente dettagliata per studenti novizi dei primi capitoli della prima edizione e abbiamo apportato consistenti modifiche agli argomenti dei Capitoli 4, 8 e 12, enfatizzando la spiegazione e tralasciando dettagli che possono essere più convenientemente trovati in testi specializzati. Ciascun capitolo è stato riscritto per migliorarne la chiarezza di esposizione e sono stati introdotti nuove spiegazioni ed esempi. Lo stile, la collocazione ed il contenuto dei capitoli dedicati alla spettroscopia (3, 13, 18 e 31) sono stati rivisti per rafforzare i collegamenti con gli argomenti trattati nei capitoli contigui nel libro. Concetti quali l'addizione coniugata e la regioselettività, che nella precedente edizione difettavano di una presentazione coerente, ora hanno propri capitoli (22 e 24). In alcune parti della prima edizione gruppi di capitoli presentavano argomenti correlati: questi sono stati ora accorpati – ad esempio, i Capitoli 25 e 26 sulla chimica degli enolati sostituiscono quattro capitoli della precedente edizione, i Capitoli 31 e 32 sulle molecole cicliche sostituiscono tre capitoli, il Capitolo 36 sui riarrangiamenti e le frammentazioni sostituisce due capitoli ed il Capitolo 42 sulla chimica organica della vita sostituisce tre capitoli. Tre capitoli collocati nella parte finale della precedente edizione sono stati spostati più avanti e rivisti per evidenziare i collegamenti degli argomenti trattati con la chimica degli enolati dei Capitoli 25 e 26. Inoltre, il Capitolo 27 tratta dello stereocontrollo nella formazione del doppio legame nel contesto della chimica dei composti elemento-organici del gruppo principale della tabella periodica e i Capitoli 29 e 30, dedicati ai composti eterociclici aromatici, ora rinforzano i collegamenti tra i meccanismi di molte delle reazioni caratteristiche di questi composti e quelli delle reazioni di addizione e condensazione dei derivati carbonilici, discusse nei capitoli precedenti. La preliminare trattazione sugli eterocicli consente anche di sviluppare attraverso i Capitoli 29-36 il tema delle molecole cicliche e degli stati di transizione e meglio si accorda con il tipico ordine di esposizione degli argomenti nei corsi di base.

Alcuni campi sono considerevolmente avanzati negli ultimi dieci anni: i capitoli sulla chimica organometallica (40) e la sintesi asimmetrica (41) sono stati oggetto di un'ampia revisione, e sono ora collocati consecutivamente per mettere in luce il ruolo essenziale della catalisi organometallica nella sintesi asimmetrica. Per illustrare le reazioni in argomento, nel libro sono stati utilizzati nuovi esempi tratti in particolare dalla recente letteratura sulla sintesi dei farmaci

¹ McEvedy, C. The Penguin Atlas of Ancient History, Penguin Books, 1967.

Traduttori

Francesco Babudri

Professore Ordinario di Chimica Organica Dipartimento di Chimica Università degli Studi di Bari Aldo Moro Capitoli 1 e 25 e pp. iii-ix, xv-xxii

Alessandro Barge

Professore Associato di Chimica Organica Dipartimento di Scienza e Tecnologia del Farmaco Università di Torino Capitolo 21 e collaborazione alla traduzione del Capitolo 15

Lucia Battistini

Professore Associato di Chimica Organica Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Capitoli 5 e 26

Giorgio Bencivenni

Professore Associato di Chimica Organica Dipartimento di Chimica Industriale "Toso Montanari" Alma Mater Studiorum Università di Bologna Capitolo 36

Vito Capriati

Professore Ordinario di Chimica Organica Dipartimento di Farmacia - Scienze del Farmaco Università degli Studi di Bari Aldo Moro *Capitoli 11 e 12*

Mauro Comes Franchini

Professore Ordinario di Chimica Organica Dipartimento di Chimica Industriale "Toso Montanari" Alma Mater Studiorum Università di Bologna Capitoli 23 e 24

Federico Cuccu

Dottorando di Ricerca in Chimica Organica Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari Capitolo 39 e collaborazione alla traduzione dei Capitoli 37 e 38

Claudio Curti

Professore Associato di Chimica Organica Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Capitoli 16 e 20

Annamaria Deagostino

Professore Associato di Chimica Organica Dipartimento di Chimica Università di Torino Capitoli 19 e 27

Mariafrancesca Fochi

Professore Associato di Chimica Organica Dipartimento di Chimica Industriale "Toso Montanari" Alma Mater Studiorum Università di Bologna Capitolo 3

Andrea Goti

Professore Ordinario di Chimica Organica Dipartimento di Chimica "Ugo Schiff" Università degli Studi di Firenze Capitoli 34 e 35

Irene Izzo

Professore Associato di Chimica Organica Dipartimento di Chimica e Biologia "A. Zambelli" Università degli Studi di Salerno *Capitoli 28 e 43*

Andrea Mazzanti

Professore Ordinario di Chimica Organica Dipartimento di Chimica Industriale "Toso Montanari" Alma Mater Studiorum Università di Bologna Capitoli 13 e 14

Alberto Minassi

Professore Associato di Chimica Organica Dipartimento di Scienze del Farmaco Università del Piemonte Orientale Capitoli 18 e 42

Rita Mocci

Ricercatore in Chimica Organica Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari Capitolo 37 e collaborazione alla traduzione dei Capitoli 38 e 39

Vittorio Pace

Professore Ordinario di Chimica Organica Dipartimento di Chimica Università di Torino Capitoli 6, 7, 8 e 9 vi TRADUTTORI

Elena Petricci

Professore Associato di Chimica Organica Dipartimento di Biotecnologie, Chimica e Farmacia Università degli Studi di Siena *Capitoli 2 e 4*

Daniele Passarella

Professore Ordinario di Chimica Organica Dipartimento di Chimica Università degli Studi di Milano La Statale *Capitoli 10 e 22*

Andrea Porcheddu

Professore Ordinario di Chimica Organica Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari Capitoli 37, 38 e 39

Cristina Prandi

Professore Ordinario di Chimica Organica Dipartimento di Chimica Università di Torino Capitoli 31 e 32

Antonio Rescifina

Professore Associato di Chimica Organica Dipartimento di Scienze del Farmaco e della Salute Università degli Studi di Catania Capitoli 17 e 33

Anna Laura Sanna

Dottoranda di Ricerca in Chimica Organica Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari Capitolo 38 e collaborazione alla traduzione dei Capitoli 37 e 39

Silvia Maria Tagliapietra

Ricercatore in Chimica Organica Dipartimento di Scienza e Tecnologia del Farmaco Università di Torino Capitolo 15 e collaborazione alla traduzione del Capitolo 21

Lorenzo Tei

Professore Ordinario di Chimica Organica Dipartimento di Scienze e Innovazione Tecnologica Università del Piemonte Orientale *Capitoli 40 e 41*

Franca Zanardi

Professore Ordinario di Chimica Organica Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Capitoli 29 e 30

Indice generale

La cilillica organica è questo noro		ΑV	Bibliografia Consignata	δ
Abbro	eviazioni	xxi	Problemi	8
1	Cos'è la chimica organica?	1	4 La struttura delle molecole	8
	La chimica organica e noi	1	Introduzione	8
	Composti organici	2	Gli elettroni si trovano negli orbitali atomici	8
	Chimica organica e industria	6	Gli orbitali molecolari — le molecole diatomiche	9
	La chimica organica e la tavola periodica	11	Legami fra atomi diversi	9
	La chimica organica e questo libro	13	L'ibridazione degli orbitali atomici	10
	Bibliografia consigliata	13	Rotazione e rigidità	10
			Conclusioni	11
2	Le strutture organiche	14	Guardando oltre	11
	Le strutture idrocarburiche e i gruppi funzionali	15	Bibliografia consigliata	11
	Disegnando le molecole	16	Problemi	11
	Strutture idrocarburiche	21	- La maniani amandaha	- 11
	l gruppi funzionali	26	5 Le reazioni organiche	113
	Gli atomi di carbonio che portano dei gruppi funzionali		Le reazioni chimiche	11
	possono essere classificati in base al loro grado di ossidazione	31	Nucleofili ed elettrofili	11
	Dare un nome ai composti	32	Le frecce curve illustrano i meccanismi di reazione	12
	Come vengono chiamati realmente i composti dai chimici?	35	Disegniamo il nostro meccanismo con le frecce curve	12
	Che nome diamo ai composti?	39	Bibliografia consigliata	12
	Bibliografia consigliata	41	Problemi	12
	Problemi	41	6 Addizione nucleofila al gruppo carbonilico	13
3	Identificazione delle strutture organiche	44	Gli orbitali molecolari spiegano la reattività del gruppo carbonilico	13
	Introduzione	44	Attacco del cianuro su aldeidi e chetoni	13
	Spettrometria di massa	47	L'angolo dell'attacco nucleofilo su aldeidi e chetoni	13
	La spettrometria di massa individua gli isotopi	49	Attacco nucleofilo di un "idruro" ad aldeidi e chetoni	13
	La composizione atomica può essere determinata mediante spettrometria di		Addizione di reagenti organometallici ad aldeidi e chetoni	13
	massa ad alta risoluzione	51	Addizione di acqua ad aldeidi e chetoni	14
	Risonanza magnetica nucleare	53	Emiacetali ottenuti dalla reazione di alcoli con aldeidi e chetoni	14
	Regioni dello spettro ¹³ C NMR	57	Anche i chetoni formano emiacetali	14
	Modi differenti per descrivere il chemical shift	58	Acidi e basi catalizzano la formazione di idrati ed emiacetali	14
	Guida all'analisi degli spettri ¹³ C NMR di alcune semplici molecole	58	Composti di addizione con bisolfito	14
	Lo spettro ¹ H NMR	60	Bibliografia consigliata	14
	Spettri infrarossi	65	Problemi	14
	L'uso combinato di spettri di massa, NMR e IR rende possibile una rapida identificazione strutturale	74	7 Delocalizzazione e coniugazione	15
	ll grado di insaturazione (GI) aiuta nella ricerca di una struttura	76	Introduzione	15
	Con uno sguardo ai Capitoli 13 e 18	80	La struttura dell'etene (etilene, CH ₂ =CH ₂)	15

viii INDICE GENERALE

	Molecole con più di un doppio legame C=C	152	Sostituzioni nucleofile al C=0 con perdita	
	La coniugazione di due legami π	155	dell'ossigeno carbonilico	239
	UV e spettro visibile	157	Introduzione	239
	ll sistema allilico	159	Le aldeidi reagiscono con gli alcoli formando emiacetali	240
	La delocalizzazione su più di tre atomi è una comune caratteristica strutturale	163	Gli acetali si formano dall'addizione di alcoli ad aldeidi	
	Aromaticità	165	o chetoni in ambiente acido	241
	Bibliografia consigliata	171	Le ammine reagiscono con i composti carbonilici	246
	Problemi	171	Le immine sono gli analoghi azotati dei composti carbonilici	247
			Riassunto	255
8	Acidità, basicità e pK _a	174	Bibliografia consigliata	255
	l composti organici sono più solubili in acqua come ioni	174	Problemi	256
	Acidi, basi e p $K_{\rm a}$	176		
	Acidità	176 12	Equilibri, velocità e meccanismi	259
	La definizione del pK _a	179	Quanto completa e veloce è una reazione?	259
	Costruzione di una scala di p $K_{\rm a}$	182	Come favorire all'equilibrio il prodotto desiderato	263
	Composti azotati come acidi e basi	185	L'entropia è importante nella determinazione delle costanti di equilibrio	265
	l sostituenti influenzano il p $K_{\rm a}$	187	Le costanti di equilibrio variano con la temperatura	267
	Atomi di carbonio acidi	187	Introduzione alla cinetica: come rendere una reazione	
	Il p K_a in azione — lo sviluppo del farmaco cimetidina	189	più veloce ed efficiente	269
	Basi e acidi di Lewis	191	Equazioni di velocità	276
	Bibliografia consigliata	192	Catalisi nelle reazioni di sostituzione al gruppo carbonilico	281
	Problemi	192	Prodotti cinetici e termodinamici	283
			Riassunto dei meccanismi descritti nei Capitoli 6-12	285
9	Utilizzo di reagenti organometallici per formare legami C-	C 195	Bibliografia consigliata	286
	Introduzione	195	Problemi	287
	l composti organometallici contengono un legame carbonio-metallo	196		
	Generare gli organometalli	197	Risonanza Magnetica Nucleare ¹ H	288
	L'utilizzo di organometalli per preparare molecole organiche	202	Differenze tra carbonio e protone NMR	288
	Ossidazione di alcoli	207	L'integrazione fornisce il numero di idrogeni in ciascun segnale	289
	Guardando oltre	209	Regioni di chemical shift dello spettro NMR al protone	291
	Bibliografia consigliata	209	Protoni su atomi di carbonio saturi	291
	Problemi	209	La regione degli alcheni e del benzene	296
			La regione aldeidica: carbonio insaturo legato all'ossigeno	300
10	Sostituzioni nucleofile al gruppo carbonilico	212	l protoni sugli eteroatomi hanno chemical shift più variabili dei protoni sul carbonio	301
	Il prodotto di addizione nucleofila ad un gruppo carbonilico non è sempre un composto stabile	212	Accoppiamento negli spettri NMR al protone	303
	Acidi carbossilici e derivati	212	Per concludere	318
	Perché gli intermedi tetraedrici sono instabili?	215	Bibliografia consigliata	318
	Non tutti i derivati degli acidi carbossilici sono ugualmente reattivi	220	Problemi	319
	l catalizzatori acidi aumentano la reattività del gruppo carbonilico	222		
	- 11	14	Stereochimica	323
	l cloruri degli acidi possono essere fatti da acidi carbossilici usando SOCI ₂ o PCI ₅	229	Alcuni composti possono esistere come coppia di immagini speculari	323
	Ottenere altri composti per reazioni di sostituzione dei derivati degli acidi	231	I diastereoisomeri sono stereoisomeri che non sono enantiomeri	332
	Ottenere chetoni dagli esteri: il problema	231	Composti chirali senza centri stereogenici	340
	Ottenere chetoni dagli esteri: la soluzione	233	Assi e centri di simmetria	341
	Per riassumere	235		341
	Per concludere	235	La separazione degli enantiomeri si chiama "risoluzione"	343
	Bibliografia consigliata	235	Bibliografia consigliata Problemi	348 348
	Problemi	236	HUDICIII	348
		230		

INDICE GENERALE ix

15	Sostituzione nucleofila al carbonio saturo	350	Cicli piccoli introducono tensione anulare nel ciclo e aumentano	
	Meccanismo della sostituzione nucleofila	350	il carattere s fuori da esso	43
	Come si può decidere quale meccanismo ($S_{\rm N}2$ o $S_{\rm N}1$) applicare ad un dato		Semplici calcoli della frequenza di stiramento del C=0 negli spettri IR	438
	composto organico?	354	Spettri NMR di alchini e cicli di piccole dimensioni	43
	Un esame più approfondito della reazione $S_{\rm N}1$	355	NMR protonico distingue protoni assiali ed equatoriali nei cicloesani	44
	Un esame più approfondito della reazione $S_{\rm N}2$	362	L'interazione tra nuclei differenti può dare costanti di accoppiamento enormi	
	Contrasti tra S _N 2 e S _N 1	364	Identificazione spettroscopica dei prodotti	44
	Il gruppo uscente nelle reazioni di SN1 e S _N 2	369	Tabelle	44
	ll nucleofilo nelle reazioni di $S_N 1$	374	Il calcolo degli spostamenti nel NMR protonico è più semplice e più utile rispetto a quello del NMR al carbonio	45
	Il nucleofilo nelle reazioni di $S_N 2$	375	Bibliografia consigliata	45
	Nucleofili e gruppi uscenti a confronto	379	Problemi	45.
	Guardando oltre: reazioni di eliminazione e di riarrangiamento	380		.5.
	Bibliografia consigliata	381	19 Addizione elettrofila agli alcheni	457
	Problemi	381	Gli alcheni reagiscono con il bromo	45
16	Analisi conformazionale	384	Ossidazione di alcheni a epossidi	459
10			L'addizione elettrofila di alcheni asimmetrici è regioselettiva	46.
	La rotazione dei legami permette alle catene di atomi di adottare un certo numero di conformazioni	384	Addizione elettrofila ai dieni	46
	Conformazione e configurazione	385	Gli ioni bromonio asimmetrici si aprono in maniera regioselettiva	46
	Barriere che si oppongono alla rotazione	386	L'addizione elettrofila agli alcheni può essere stereospecifica	468
	Le conformazioni dell'etano	387	Addizione di due gruppi ossidrilici: diidrossilazione	47
	Le conformazioni del propano	388	Rompere completamente un doppio legame: scissione con	
	Le conformazioni del butano	389	il periodato e ozonolisi	47
	La tensione di anello	390	Aggiungere un gruppo ossidrilico: come addizionare una molecola	47
	Uno sguardo ravvicinato al cicloesano	394	d'acqua ad un doppio legame	47.
	l cicloesani sostituiti	398	Per concludere un riepilogo delle reazioni di addizione elettrofila	47
	Per concludere	405	Bibliografia consigliata Problemi	470
	Bibliografia consigliata	405	Problemi	47
	Problemi	405	Preparazione e reattività di enoli ed enolati	478
			Accettereste una miscela di composti come una sostanza pura?	478
17	Reazioni di eliminazione	407	Tautomeria: formazione degli enoli per trasferimento di un protone	479
	Sostituzione ed eliminazione	407	Perché le aldeidi e i chetoni semplici non esistono come enoli?	480
	Come il nucleofilo influenza l'eliminazione rispetto alla sostituzione	409	Evidenze sperimentali dell'equilibrio tra composti carbonilici ed enoli	480
	Meccanismi E1 ed E2	411	L'enolizzazione è catalizzata dagli acidi e dalle basi	48
	La struttura del substrato può consentire la E1	412	Nella reazione base-catalizzata l'intermedio è uno ione enolato	48
	La regola del gruppo uscente	414	Compendio delle tipologie di enoli ed enolati	48.
	Le reazioni E1 possono essere stereoselettive	416	Enoli stabili	48
	Le eliminazioni E2 hanno stati di transizione anti-periplanari	419	Conseguenze dell'enolizzazione	488
	La regioselettività delle eliminazioni E2	422	Reazioni che prevedono enoli ed enolati come intermedi	48
	I gruppi che stabilizzano gli anioni permettono un altro meccanismo — l'E1cB	423	Equivalenti stabili degli anioni enolato	49
	Per concludere	427	Reazioni di enoli ed enolati all'ossigeno: preparazione degli enol eteri	49
	Bibliografia consigliata	429	Reazioni degli enol eteri	49
	Problemi	429	Per concludere	49
			Bibliografia consigliata	49
18	Revisione dei metodi spettroscopici	432	Problemi	49
	l tre obiettivi di questo capitolo	432		
	Spettroscopia e chimica del gruppo carbonilico	433	21 Sostituzioni elettrofile aromatiche	50 1
	l derivati degli acidi carbossilici si possono distinguere efficientemente		Introduzione: enoli e fenoli	501
	con l'infrarosso	436	Il benzene e le sue reazioni con gli elettrofili	503

X INDICE GENERALE

	Sostituzione elettrofila sul fenolo	508	Regioselettività in azione	617
	Il doppietto elettronico dell'azoto attiva ancora più fortemente	511	Bibliografia consigliata	618
	Anche gli alchil benzeni reagiscono in posizione <i>orto</i> e <i>para</i>	513	Problemi	618
	Sostituenti elettronattrattori originano prodotti meta	516		
	Gli alogeni mostrano evidenze degli effetti elettronici attrattore e donatore	518	Alchilazione di enolati	621
	Due o più sostituenti possono cooperare o competere	520	l gruppi carbonilici mostrano diverse reattività	621
	Alcuni svantaggi e vantaggi	521	Alcune importanti considerazioni che influiscono su tutte le alchilazioni	621
	Uno sguardo ravvicinato alle reazioni di Friedel-Crafts	521	Nitrili e nitroalcani possono essere alchilati	622
	Sfruttare la chimica del nitro gruppo	523	Scelta dell'elettrofilo per l'alchilazione	624
	Riassunto	524	Enolati di litio di composti carbonilici	624
	Bibliografia consigliata	526	Alchilazione degli enolati di litio	625
	Problemi	526	Equivalenti specifici di enolati per l'alchilazione di aldeidi e chetoni	628
			Alchilazione di composti β-dicarbonilici	632
22	Addizioni coniugate e sostituzioni nucleofile aromatiche	530	L'alchilazione di chetoni pone problemi di regioselettività	635
	Alcheni coniugati con gruppi carbonilici	530	Gli enoni forniscono la soluzione a problemi di regioselettività	638
	Gli alcheni coniugati possono essere elettrofili	531	Accettori di tipo Michael come elettrofili	642
	Sommario: fattori che controllano l'addizione coniugata	541	Per concludere	649
	Estendiamo la reazione ad altri alcheni elettron-poveri	542	Bibliografia consigliata	650
	Reazioni di sostituzione coniugata	543	Problemi	650
	Epossidazione nucleofila	545	Homelii	050
	Sostituzione nucleofila aromatica	546	Le reazioni degli enolati con i composti carbonilici:	
	Il meccanismo di addizione-eliminazione	547	la reazione aldolica e la reazione di Claisen	653
	Il meccanismo S _N 1 per la sostituzione nucleofila aromatica: sali di diazonio	552		
	II meccanismo via benzino	555	Introduzione	653 654
	Per concludere	558	La reazione aldolica	004
	Bibliografia consigliata	558	Per controllare le reazioni aldoliche si possono usare speciali equivalenti di enoli	663
	Problemi	559	Come controllare le reazioni aldoliche di esteri	670
			Come controllare le reazioni aldoliche delle aldeidi	671
23	Chemoselettività e gruppi protettori	562	Come controllare le reazioni aldoliche dei chetoni	673
	Selettività	562	Reazioni aldoliche intramolecolari	675
	Agenti riducenti	564	Acilazione al carbonio	679
	Riduzione di gruppi carbonilici	564	Condensazioni di esteri incrociate	682
	ldrogeno come agente di riduzione: l'idrogenazione catalitica	568	Riepilogo delle preparazioni di chetoesteri mediante reazione di Claisen	686
	Rimozione di gruppi funzionali	573	Controllare l'acilazione con specifici equivalenti enolici	687
	Riduzione a dissoluzione di metalli	575	Le condensazioni di Claisen incrociate intramolecolari	691
	Selettività nelle reazioni di ossidazione	578	La chimica dei carbonili — il prossimo passo?	693
	Reattività competitiva: scegliere quale gruppo reagisce	580	Bibliografia consigliata	693
	Una rassegna dei gruppi protettori	583	Problemi	694
	Bibliografia consigliata	594		
	Problemi	595	Zolfo, silicio e fosforo in chimica organica	697
_			Elementi utili dei gruppi principali	697
24	Regioselettività	597	Lo zolfo: un elemento contraddittorio	697
	Introduzione	597	Anioni stabilizzati dallo zolfo	701
	Regioselettività nelle sostituzioni elettrofile aromatiche	598	l sali di solfonio	705
	Attacco elettrofilico su alcheni	605	Le ilidi di solfonio	706
	Regioselettività nelle reazioni radicaliche	606	Confronto tra silicio e carbonio	709
	Attacco nucleofilico su composti allilici	609	l silani allilici sono nucleofili	716
	Attacco elettrofilico su dieni coniugati	614	La sintesi selettiva degli alcheni	718
	Addizioni coniugate	616	Le proprietà degli alcheni dipendono dalla loro geometria	718

INDICE GENERALE Xi

	Sfruttare i composti ciclici	719	30	Eterocicli aromatici 2: sintesi	805
	L'equilibrio degli alcheni	720		La termodinamica è dalla nostra parte	806
	Gli alcheni E e Z possono essere prodotti per addizione			Disconnettiamo dapprima i legami carbonio-eteroatomo	806
	stereoselettiva agli alchini	722		Pirroli, tiofeni e furani da composti 1,4-dicarbonilici	808
	Gli alcheni <i>E</i> possono essere formati in modo predominante	725		Come preparare le piridine: sintesi di Hantzsch della piridina	811
	attraverso reazioni di eliminazione stereoselettive	725		Pirazoli e piridazine da idrazina e composti dicarbonilici	815
	L'olefinazione di Julia è regiospecifica e connettiva	727		Le pirimidine si possono preparare da composti 1,3-dicarbonilici e ammidin	e 818
	L'eliminazione stereospecifica può dare isomeri puri di alcheni	729		l nucleofili non simmetrici pongono problemi di selettività	819
	Forse il modo più importante di fare alcheni: la reazione di Wittig	730		Gli isossazoli si preparano da idrossilammina o mediante cicloaddizione	820
	Per concludere	734		l tetrazoli e i triazoli si preparano anch'essi mediante reazioni	
	Bibliografia consigliata Problemi	734 734		di cicloaddizione	822
	riobietili	/ 34		La sintesi di Fischer degli indoli	823
28	Analisi retrosintetica	738		Chinoline e isochinoline	828
	Chimica creativa	738		Più eteroatomi negli anelli fusi significa scelta più ampia nella sintesi	832
	Le disconnessioni devono corrispondere a reazioni note e affidabili	739		Riassunto: i tre approcci principali per la sintesi degli eterocicli aromatici	833
	l sintoni sono dei reagenti ideali	739		Bibliografia consigliata	836
	Sintesi multistadio: evitare i problemi di chemoselettività	742		Problemi	836
	Interconversione del gruppo funzionale	743			
	Le disconnessioni su due gruppi funzionali sono preferibili rispetto		31	Eterocicli saturi ed effetti stereoelettronici	839
	a quelle prossime a un unico gruppo	746		Introduzione	839
	Le disconnessioni C—C	750		Reazioni degli eterocicli saturi	840
	Materiali di partenza a disposizione	755		Conformazione degli eterocicli saturi	846
	Sintoni donatori e accettori	756		Determinare la stereochimica quando le costanti di accoppiamento	
	Disconnessioni C—C di due gruppi	756		non sono di aiuto: l'effetto nucleare Overhauser	849
	Gruppi funzionali con una relazione 1,5	763		Sintetizzare gli eterocicli: le reazioni di chiusura di anello	855
	"Reattività naturale" e "umpolung"	763		Dimensioni di anello e NMR	864
	Per concludere	766		Accoppiamento geminale (²J)	867
	Bibliografia consigliata	766		Gruppi diastereotopici	870
	Problemi	766		Per riassumere	874
20	Eterocicli aromatici 1: reazioni	769		Bibliografia consigliata Problemi	874 874
29				riobietili	0/4
	Introduzione	769	32	Stereoselettività nelle molecole cicliche	878
	L'aromaticità persiste quando parti dell'anello del benzene sono sostituite con atomi di azoto	770	32		
	La piridina è una immina aromatica poco reattiva	771		Introduzione	878
	Gli eterocicli aromatici a sei termini possono contenere ossigeno nell'anello	778		Controllo stereochimico negli anelli a sei termini	879 885
	Gli eterocicli aromatici a cinque termini sono validi substrati	,,,		Reazioni di anelli piccoli Controllo regiochimico negli epossidi del cicloesene	889
	per la sostituzione elettrofila	779		Stereoselettività nei composti biciclici	892
	Furano e tiofene sono gli analoghi ossigenato e solforato del pirrolo	781		Composti biciclici fusi	894
	Altre reazioni degli eterocicli a cinque termini	784		Composti spirociclici	899
	Anelli a cinque termini con due o più atomi di azoto	786		Reazioni con intermedi ciclici o stati di transizione ciclici	900
	Eterocicli benzo-fusi	791		Per riassumere	904
	Inserimento di più atomi di azoto in un anello a sei termini	794		Bibliografia consigliata	904
	Anelli fusi con la piridina: chinoline e isochinoline	795		Problemi	905
	Gli eterocicli aromatici possono avere in ciascun anello molti atomi di azoto ma un solo atomo di zolfo o di ossigeno	797			
	Esistono migliaia di altri eterocicli	799	33	Diastereoselettività	908
	Quali strutture eterocicliche bisogna imparare?	800		Uno sguardo a quanto fatto	908
	Bibliografia consigliata	801		Prochiralità	912
	Problemi	802			

xii INDICE GENERALE

	Le addizioni ai gruppi carbonilici possono essere diastereoselettive		La polarizzazione dei legami C—C favorisce la frammentazione	1023
	anche senza anelli	914	Le reazioni di frammentazione sono controllate dalla stereochimica	1025
	Reazioni stereoselettive di alcheni aciclici	921	Espansione d'anello via frammentazione	1026
	Le reazioni aldoliche possono essere stereoselettive	924	Il controllo dei doppi legami usando la frammentazione	1028
	Singoli enantiomeri da reazioni diastereoselettive	927	La sintesi del nootkatone: un caso esemplare di frammentazione	1029
	Guardando oltre	932	Guardando oltre	1032
	Bibliografia consigliata	932	Bibliografia consigliata	1032
	Problemi	932	Problemi	1032
34	Reazioni pericicliche 1: cicloaddizioni	935	37 Reazioni radicaliche	1037
	Un nuovo tipo di reazione	935	l radicali possiedono elettroni spaiati	1037
	Descrizione generale della reazione di Diels-Alder	937	l radicali si formano per omolisi di legami deboli	1038
	Il diene	937	La maggior parte dei radicali è estremamente reattiva	1041
	Descrizione delle cicloaddizioni con gli orbitali di frontiera	944	Come analizzare le strutture dei radicali: spettroscopia di risonanza di spir	l
	La regioselettività nelle reazioni di Diels-Alder	947	elettronico	1042
	La descrizione di Woodward-Hoffmann della reazione di Diels-Alder	950	Stabilità dei radicali	1044
	L'intrappolamento di intermedi reattivi per mezzo di cicloaddizioni	951	Come reagiscono i radicali?	1047
	Altre cicloaddizioni termiche	952	Reazioni radicale-radicale	1047
	Cicloaddizioni fotochimiche [2 + 2]	954	Le reazioni radicaliche a catena	1051
	Cicloaddizioni termiche [2 + 2]	956	Clorurazione di alcani	1053
	Come ottenere anelli a cinque termini: le cicloaddizioni 1,3-dipolari	959	Bromurazione allilica	1056
	Due reazioni molto importanti sotto l'aspetto sintetico: le cicloaddizioni o	degli	Invertire la selettività: sostituzione radicalica di Br con H	1057
	alcheni con tetrossido di osmio e con ozono	963	La formazione del legame carbonio-carbonio con i radicali	1059
	Riassunto delle reazioni di cicloaddizione	965	L'andamento di reattività dei radicali è abbastanza diverso da quello	
	Bibliografia consigliata	966	dei reagenti polari	1064
	Problemi	966	Radicali alchilici da borani e ossigeno	1065
			Le reazioni radicaliche intramolecolari sono più efficienti di quelle	
35	Reazioni pericicliche 2:		intermolecolari	1066
	reazioni sigmatropiche ed elettrocicliche	969	Guardando oltre	1069
	Trasposizioni sigmatropiche	969	Bibliografia consigliata	1069
	Descrizione orbitalica delle trasposizioni [3,3]-sigmatropiche	972	Problemi	1069
	La direzione delle trasposizioni [3,3]-sigmatropiche	973	Sintesi e reazioni dei carbeni	1073
	Trasposizioni [2,3]-sigmatropiche	977		
	Shift [1,5]-sigmatropici di idrogeno	979	Il diazometano promuove la sintesi di esteri metilici a partire da acidi carbossilic	
	Reazioni elettrocicliche	982	La fotolisi del diazometano produce un carbene	1075
	Bibliografia consigliata	990	Come sappiamo che i carbeni esistono?	1076
	Problemi	990	Strategie per sintetizzare i carbeni	1076
			l carbeni possono essere suddivisi in due categorie	1080
36	Reazioni di partecipazione,		In che modo reagiscono i carbeni?	1083
	riarrangiamento e frammentazione	994	l carbeni reagiscono con gli alcheni per produrre ciclopropani	1083
	I gruppi vicinali possono accelerare le reazioni di sostituzione	994	Inserzione in un legame C—H	1088
	l riarrangiamenti si verificano quando un gruppo partecipante		Reazioni di riarrangiamento	1090
	migra da un atomo di carbonio ad un altro	1000	l nitreni sono analoghi azotati dei carbeni	1092
	l carbocationi riarrangiano rapidamente	1003	Metatesi di alcheni	1093
	ll riarrangiamento pinacolico	1008	Riassunto	1097
	ll riarrangiamento dienone-fenolo	1012	Bibliografia consigliata	1097
	ll riarrangiamento dell'acido benzilico	1013	Problemi	1098
	Il riarrangiamento di Favorskii	1013		
	La migrazione verso l'ossigeno: la reazione di Baeyer—Villiger	1016	39 Determinare il meccanismo di reazione	1101
	Il riarrangiamento di Beckmann	1021	Ci sono meccanismi e meccanismi	1101

			INDICE GENERALE	xiii
	Determinare il meccanismo di reazione: la reazione di Cannizzaro	1103	Ausiliari chirali	1184
	Accertarsi della struttura del prodotto	1107	Reagenti chirali	1190
	Variazione sistematica della struttura	1112	Catalisi asimmetrica	1191
	La relazione di Hammett	1113	Formazione asimmetrica di legami carbonio-carbonio	1203
	Altre evidenze cinetiche per i meccanismi di reazione	1122	Reazioni aldoliche asimmetriche	1206
	Catalisi acida e basica	1125	Enzimi come catalizzatori	1209
	La rilevazione degli intermedi	1132	Bibliografia consigliata	1210
	Stereochimica e meccanismo	1135	Problemi	1211
	Riassunto dei metodi per l'indagine del meccanismo	1139		
	Bibliografia consigliata	1140	42 La chimica organica della vita	1215
	Problemi	1140	Metabolismo primario	1215
			La vita inizia con gli acidi nucleici	1216
40	Chimica organometallica	1144	Le proteine sono costituite da amminoacidi	1220
	I metalli di transizione estendono la gamma delle reazioni organiche	1144	Gli zuccheri: solo una fonte di energia?	1223
	La regola dei 18 elettroni	1145	Lipidi	1228
	Legame e reazioni nei complessi di metalli di transizione	1148	l meccanismi della chimica biologica	1230
	Il palladio è il metallo più utilizzato in catalisi omogenea	1153	Prodotti naturali	1237
	La reazione di Heck accoppia un alogenuro organico		Acidi grassi e altri polichetidi derivano dall'acetil CoA	1242
	o triflato e un alchene	1154	l terpeni sono i costituenti volatili delle piante	1245
	Cross-coupling di composti organometallici e alogenuri	1157	Bibliografia consigliata	1248
	l composti elettrofili allilici sono attivati dal palladio(0)	1163	Problemi	1249
	L'amminazione di anelli aromatici può essere catalizzata da palladio	1167		
	Gli alcheni coordinati al palladio(II) vengono attaccati dai nucleofili	1171	43 La chimica organica ai giorni nostri	1253
	Catalisi del palladio nella sintesi totale di un alcaloide naturale	1173	l progressi della scienza attraverso l'interazione tra le discipline	1253
	Una panoramica su altri metalli di transizione	1174	La chimica contro i virus	1254
	Bibliografia consigliata	1176	ll futuro della chimica organica	1263
	Problemi	1176	Bibliografia consigliata	1265
	Sintesi asimmetrica	1179	Fonti delle illustrazioni	1266
41			Tavola periodica degli elementi	1268
	La natura è asimmetrica	1179	Indice analitico	1271
	La riserva chirale: i centri stereogenici naturali "pronti all'uso"	1181		
	La risoluzione di una miscela racemica può essere utilizzata per separare gli enantiomeri	1183		

La chimica organica e questo libro

Si potrebbe dire dal titolo che questo libro narra di chimica organica. Ma esso dice di più: dice anche come noi apprendiamo la chimica organica. Narra fatti, ma insegna anche come scoprire i fatti. Narra di reazioni e insegna a prevedere quali reazioni possono avvenire. Narra di molecole e insegna come elaborare delle vie per poterle costruire.

Noi diciamo "esso narra"; forse si potrebbe dire "noi narriamo", poiché noi desideriamo parlare al lettore affinché attraverso le nostre parole si possa fare un'idea di quello che noi pensiamo sulla chimica organica e come cerchiamo di incoraggiarlo a sviluppare sue proprie idee. Ci aspettiamo che egli si renda conto che tre persone hanno scritto questo libro e che esse non pensano o scrivono affatto allo stesso modo. La chimica organica è un soggetto così ampio ed importante da non poter essere ristretto da regole dogmatiche. Diversi chimici la pensano in modo differente su molti aspetti della chimica organica ed in molti casi non è ancora possibile, e potrebbe non esserlo mai, avere la sicurezza su chi è nel giusto. In molti casi questo non ha comunque importanza.

Di quando in quando faremo riferimento alla storia della chimica, ma normalmente tratteremo della chimica organica quale essa è ora. Svilupperemo le idee gradatamente, da quelle semplici e fondamentali usando piccole molecole a quelle più complesse con grandi molecole. Non cercheremo di rendere le cose artificiosamente semplici ed evitare domande imbarazzanti. Il nostro scopo è essere onesti e condividere con il lettore sia il piacere di complete ed esaurienti spiegazioni sia le nostre perplessità di fronte a quelle inadeguate.

I capitoli

Come intendiamo fare questo? Il libro ha inizio con una serie di capitoli sulle strutture e reazioni di molecole semplici. Vedremo come le strutture di queste molecole vengono determinate e la teoria che razionalizza queste strutture. È di estrema importanza rendersi conto che la teoria è utilizzata per interpretare ciò che è noto tramite la sperimentazione e solo allora formulare previsioni su quello che non è noto. Verranno trattati i meccanismi - un linguaggio dinamico utilizzato dai chimici per discutere delle reazioni - e naturalmente alcune reazioni.

Il libro inizia con una parte introduttiva di quattro capitoli:

- 1. Cos'è la chimica organica?
- 2. Le strutture organiche
- 3. Identificazione delle strutture organiche
- 4. La struttura delle molecole

Il Capitolo 1 è una "guida di base" al soggetto: introduce le principali aree dove la chimica organica gioca un ruolo e ne descrive la scena mostrando qualche istantanea degli eventi più rilevanti. Nel Capitolo 2 esamineremo come le molecole possono essere disegnate sulla pagina stampata. La chimica organica è un soggetto visuale tridimensionale ed il modo in cui vengono disegnate le molecole mostra come si ragiona su di esse. Desideriamo che i lettori disegnino le molecole nel miglior modo possibile. Infatti è altrettanto facile disegnarle in maniera corretta che disegnarle in maniera antiquata o inaccurata.

Nel Capitolo 3, prima di esaminare la teoria che razionalizza la struttura molecolare, introduciamo le tecniche sperimentali che ci consentono di determinarla. Questo comporta lo studio delle interazioni tra le molecole e la radiazione elettromagnetica tramite la spettroscopia, utilizzando l'intero spettro dai raggi-X alle onde radio. Solo dopo, nel Capitolo 4, entreremo nel vivo dell'argomento esaminando le teorie sul perché gli atomi si combinano tra di loro e in che modo lo fanno. L'esperimento viene prima della spiegazione. I metodi spettroscopici del

Capitolo 3 potranno darci informazioni per un centinaio di anni ancora, ma a quel tempo le teorie del Capitolo 4 appariranno del tutto obsolete.

Avremmo potuto intitolare questi tre capitoli come:

- 2. Quali forme hanno le molecole organiche?
- 3. Come sappiamo che esse hanno quelle forme?
- 4. Perché hanno quelle forme?

È necessario avere una conoscenza approfondita delle risposte a queste tre domande prima di iniziare lo studio delle reazioni organiche. E questo è esattamente quello che segue. Nel Capitolo 5 presentiamo i meccanismi delle reazioni organiche. Ogni branca della chimica studia reazioni – trasformazioni di molecole in altre molecole. Il processo dinamico attraverso il quale tale trasformazione avviene è chiamato *meccanismo* e costituisce la grammatica della chimica organica, cioè la via con cui una molecola si trasforma in un'altra. È necessario iniziare subito ad imparare a usare questo linguaggio, e così nel Capitolo 6 lo applicheremo ad una importante classe di reazioni. Pertanto, abbiamo:

- 5. Le reazioni organiche
- 6. Addizione nucleofila al gruppo carbonilico

Il Capitolo 6 ci mostra come andiamo a suddividere la chimica organica. Useremo la classificazione meccanicistica invece che quella strutturale e spiegheremo ogni tipo di *reazione* piuttosto che ogni tipo di *composto* in ciascun capitolo. Per il resto del libro la maggior parte dei capitoli descrive le tipologie di reazioni dal punto di vista meccanicistico. Segue una selezione di capitoli della prima metà del libro:

- 9. Utilizzo di reagenti organometallici per formare legami C-C
- 10. Sostituzioni nucleofile al gruppo carbonilico
- 11. Sostituzioni nucleofile al C=O con perdita dell'ossigeno carbonilico
- 15. Sostituzione nucleofila al carbonio saturo
- 17. Reazioni di eliminazione
- 19. Addizione elettrofila agli alcheni
- 20. Preparazione e reattività di enoli ed enolati
- 21. Sostituzioni elettrofile aromatiche
- 22. Addizioni coniugate e sostituzioni nucleofile aromatiche

Inframmezzati con questi capitoli ve ne sono altri su aspetti fisici della struttura molecolare e sulla reattività, sulla stereochimica e sulla determinazione strutturale, che ci consentono di mostrare come verifichiamo che tutto ciò che esponiamo sia vero e di razionalizzare intelligentemente le reazioni.

- 7. Delocalizzazione e coniugazione
- **8.** Acidità, basicità e p K_a
- 12. Equilibri, velocità e meccanismi
- 13. Risonanza Magnetica Nucleare ¹H
- 14. Stereochimica
- 16. Analisi conformazionale
- 18. Revisione dei metodi spettroscopici

Quando raggiungeremo la fine del Capitolo 22 avremo esaminato la maggior parte delle vie attraverso le quali le molecole organiche reagiscono le une con le altre e dedicheremo due capitoli alla rivisitazione di alcune delle reazioni che abbiamo in precedenza trattato nei due capitoli dedicati alla stereoselettività: come possiamo fare perché la reazione desiderata avvenga evitando quella indesiderata.

- 23. Chemoselettività e gruppi protettori
- 24. Regioselettività

Gli argomenti trattati sono ora disponibili per mostrare quale uso fare dei meccanismi di reazione esaminati. Quattro capitoli sono dedicati all'utilizzo della chimica dei composti carbonilici e alla chimica di Si, S e P per formare il legame C-C e C=C. Mettiamo quindi tutto

questo insieme in un capitolo che fornisce gli strumenti per elaborare la migliore strategia di sintesi di una specifica molecola.

- 25. Alchilazione di enolati
- 26. Le reazioni degli enolati con i composti carbonilici: la reazione aldolica e la reazione di Claisen
- 27. Zolfo, silicio e fosforo in chimica organica
- 28. Analisi retrosintetica

Un gran numero di composti organici contiene anelli e molte strutture cicliche racchiudono uno o due aspetti che sono specifici: aromaticità e conformazioni ben definite. Nel successivo gruppo di capitoli, attraverso la chimica dei composti ciclici, acquisiremo gli strumenti necessari per capire perché anche molecole acicliche possono reagire per dare prodotti con specifiche caratteristiche spaziali.

- 29. Etrocicli aromatici 1: reazioni
- 30. Eterocicli aromatici 2: sintesi
- 31. Eterocicli saturi ed effetti stereoelettronici
- 32. Stereoselettività nelle molecole cicliche
- 33. Diastereoselettività

Abbiamo in precedenza rimarcato che il Capitolo 22 rappresenta il punto in cui è stata esaminata la maggior parte – ma non tutte – delle più importanti modalità attraverso le quali le molecole reagiscono tra di loro. Nella parte successiva del libro passeremo in rassegna meccanismi alternativi, alquanto meno comuni, ma estremamente importanti, terminando con un capitolo su come può essere determinato il meccanismo attraverso il quale una reazione decorre.

- 34. Reazioni pericicliche 1: cicloaddizioni
- 35. Reazioni pericicliche 2: reazioni sigmatropiche ed elettrocicliche
- 36. Reazioni di partecipazione, riarrangiamento e frammentazione
- 37. Reazioni radicaliche
- 38. Sintesi e reazioni dei carbeni
- 39. Determinare il meccanismo di reazione

Negli ultimi capitoli del libro introdurremo alcuni dei ruoli più stimolanti che la chimica organica è stata chiamata a giocare e in molti casi tratteremo di chimica scoperta soltanto in questi ultimi anni. Le reazioni di questi capitoli sono state impiegate per ottenere delle molecole molto complesse mai sintetizzate e per gettare una luce su come la chimica organica sostenga la vita stessa.

- 40. Chimica organometallica
- 41. Sintesi asimmetrica
- 42. La chimica organica della vita
- 43. La chimica organica ai giorni nostri

"Collegamenti"

Quella della precedente sezione è una lista lineare dei 43 capitoli; tuttavia, la chimica non è un soggetto lineare! È impossibile lavorare per tutto l'intero campo della chimica organica semplicemente partendo dall'inizio e proseguendo sino alla fine ed esaminando un argomento alla volta, poiché la chimica è una rete di idee interconnesse tra loro. Sfortunatamente, un libro è, per sua natura, un oggetto con una struttura inizio-fine. Abbiamo disposto i capitoli in una progressione per quanto possibile a difficoltà crescente e, come aiuto al lettore per costruire un proprio percorso, abbiamo incluso all'inizio di ogni capitolo una sezione denominata "Collegamenti", divisa in tre colonne, ciascuna delle quali contiene tre informazioni:

- (a) La colonna "Prerequisiti": tutto quello che dovrebbe essere familiare prima di leggere il capitolo; in altri termini quali capitoli precedenti sono in relazione diretta con l'argomento del capitolo.
- (b) La colonna "Obiettivi": una guida di quello che viene trattato nel capitolo.

- (c) La colonna "Con uno sguardo a": indicazione dei capitoli successivi in cui gli argomenti del capitolo verranno completati e trattati più diffusamente.
- Prima della lettura di ogni capitolo, è opportuno aver letto tutti quelli citati in (a). Una volta acquisita maggiore familiarità con il libro, i rimandi evidenziati in (a) e in (c) saranno di aiuto per comprendere come la chimica si interconnette con sé stessa.

Riquadri e note a margine

Altri oggetti a cui prestare attenzione sono i riquadri e le note a margine. Ve ne sono di quattro tipi:

 Il riquadro più importante appare come questo. Quello che è contenuto in questo tipo di riquadro è un concetto chiave o un riassunto. Questo è il tipo di riquadro da tenere bene a mente nella lettura del capitolo o di cui prendere nota nell'apprendimento.

Riquadri come questo contengono ulteriori esempi, informazioni di base anche divertenti e analogo materiale interessante ma forse non essenziale. Ad una prima lettura del capitolo si può tralasciare questo tipo di riquadro e leggerne il contenuto in un secondo momento per rafforzare alcuni dei temi principali del capitolo.

Bibliografia consigliata

Alla fine di ogni capitolo, per una conoscenza più approfondita degli argomenti trattati, è presente una raccolta di riferimenti — libri, rassegne nella letteratura chimica o anche pubblicazioni originali di ricerca. Vi sono moltissimi esempi in questo libro e per la maggior parte di essi non sono presenti riferimenti diretti alla pubblicazione originale, che di solito può essere reperita da una ricerca in database elettronici. Abbiamo, invece, selezionato le pubblicazioni che ci sono sembrate le più interessanti o le più pertinenti. Questo libro non è una enciclopedia della chimica organica; un testo con queste caratteristiche è il *March's Advanced Organic Chemistry* (M.B. Smith and J. March, 6th edn, Wiley, 2007), che contiene migliaia di riferimenti.

Problemi

Non si può imparare tutto della chimica organica. Si possono imparare cose banali come i nomi dei composti organici, ma questo non aiuta a comprendere i principi alla base del soggetto. È necessario *comprendere* i principi poiché l'unica via per affrontare la chimica organica è imparare a lavorare con essa. Per questo alla fine di ogni capitolo abbiamo proposto dei problemi. Essi sono di aiuto per verificare la comprensione degli argomenti presentati in ciascun capitolo.

Se il capitolo tratta un particolare tipo di reazione, ad esempio le reazioni di eliminazione (Capitolo 19), sono descritte le diverse vie ("meccanismi") attraverso le quali la reazione può decorrere e sono riportati esempi che definiscono ciascun meccanismo. Nel Capitolo 19 sono descritti tre meccanismi e circa 60 esempi in totale. Potrebbe sembrare un gran numero, ma in realtà vi sono milioni di esempi noti di questi meccanismi ed il Capitolo 19 scalfisce semplicemente la superficie. I problemi aiutano a verificare che la vostra comprensione sia completa e che possa resistere alle difficoltà di interpretare la chimica della vita reale.

In generale, i 10-15 problemi alla fine di ogni capitolo partono da un livello di difficoltà basso che via via aumenta. Essi sono di due o tre tipi. I problemi del primo tipo, in genere più brevi e più facili, consistono in una revisione degli argomenti del capitolo. Essi possono riprendere esempi dal capitolo per verificare la capacità di applicare le idee in situazioni familiari. I problemi successivi possono sviluppare idee specifiche da differenti parti del capitolo, chiedendo per esempio perché un composto reagisce in un certo modo ed un altro simile si comporta in maniera completamente diversa. Infine, vi sono alcuni problemi più stimolanti che richiedono di estendere le idee a molecole non familiari e, in particolare verso la fine del libro, a situazioni che richiamano argomenti da più di un capitolo.

- Questo tipo di nota a margine conterrà riferimenti incrociati con altre parti del libro come ulteriore aiuto alla navigazione al suo interno. Un esempio di tale nota è presente a pagina 10.
- Talvolta il testo del libro richiede un chiarimento o una espansione e questo tipo di nota a margine contiene dei piccoli supplementi di informazione per aiutare la comprensione dei punti più difficili. Inoltre, costituisce un richiamo ad altri argomenti presenti altrove nel libro che possono chiarire quello di cui si sta trattando. È opportuno includere anche queste note in una prima lettura del capitolo, ma è possibile anche rimandarle ad un momento successivo quando l'argomento trattato sarà più familiare.

I problemi a fine capitolo dovrebbero aiutare a intraprendere la giusta via, ma non costituiscono la fine del viaggio di apprendimento. Se il lettore utilizza questo testo come parte di un corso universitario, dovrebbe reperire il tipo di problemi di esame adottato dalla propria università e prendere pratica con essi. Il tutor del corso sarà in grado di dare suggerimenti sui problemi più idonei per ciascuna fase del percorso di apprendimento.

Colore

Sfogliando le pagine di questo libro, certamente si nota un aspetto insolito: quasi tutte le strutture chimiche sono disegnate in rosso. Questo è intenzionalmente voluto: un rosso vivace fa risaltare il messaggio che, in chimica organica, le strutture sono più importanti delle parole. Talvolta piccole parti della struttura sono riprodotte in altro colore: di seguito due esempi tratti dalla p. 12, dove discutiamo di composti organici contenenti altri elementi oltre a C e H.

Perché i simboli degli atomi sono in nero? Perché vogliamo evidenziare che questi sono esterni alla struttura della molecola. In generale noterete come il nero sia utilizzato per evidenziare particolari importanti della molecola: i gruppi che prendono parte alla reazione o modificazioni della struttura come risultato della reazione, come negli esempi tratti dai Capitoli 9 e 17.

Spesso useremo il nero per meglio evidenziare le "frecce curve", simboli che mostrano il movimento degli elettroni ed il cui uso impareremo nel Capitolo 5. Di seguito esempi tratti dai Capitolo 11 e 22: si noti che il nero evidenzia anche le cariche "+" e "-".

In qualche occasione utilizzeremo altri colori quali verde, arancione, marrone, per evidenziare punti della molecola di importanza secondaria. L'esempio successivo è parte di uno schema di reazione tratto dal Capitolo 17: vogliamo mettere in risalto che si forma una molecola di acqua ($\rm H_2O$). Gli atomi in verde individuano quelli da cui si origina la molecola di acqua. Si notino anche le frecce curve ed il nuovo legame rappresentati in nero.

Altri colori intervengono in situazioni più complesse. Nell'esempio dal Capitolo 21 vogliamo evidenziare due possibili decorsi della reazione: le frecce in marrone e in arancione mostrano le due alternative, l'atomo di deuterio rimane verde nei due casi.

Infine, nel Capitolo 14 il colore ci aiuta a sottolineare le differenze tra l'atomo di carbonio con quattro gruppi differenti legati e quello con solo tre gruppi differenti. Il messaggio conclusivo è: se è presente qualcosa in un colore diverso dal rosso, è necessario prestare particolare attenzione: il cambio di colore ha un motivo ben preciso.

Abbreviazioni

Ac	Acetile	E1	Eliminazione unimolecolare
Acac	Acetilacetonato	E2	Eliminazione bimolecolare
AD	Diidrossilazione asimmetrica	$\mathbf{E}_{\mathbf{a}}$	Energia di attivazione
ADP	Adenosina 5-difosfato	EDTA	Acido etilendiamminotetracetico
AE	Epossidazione asimmetrica	EPR	Risonanza elettronica paramagnetica
AIBN	Azobisisobutirronitrile	ESR	Risonanza elettronica di spin
Ar	Arile	Et	Etile
ATP	Adenosina trifosfato	FGI	Interconversione di gruppo funzionale
9-BBN	9-Borabiciclo[3.3.1]nonano	Fmoc	Fluorenilmetilossicarbonile
BHT	Idrossi toluene butilato	GAC	Catalisi acida generale
	(2,6-di- <i>t</i> -butil-4-metilfenolo)	GBC	Catalisi basica generale
BINAP	Bis(difenilfosfino)-1,1'-binaftile	HMPA	Esametilfosforammide
Bn	Benzile	HMPT	Triammide esametilfosforosa
Boc, BOC	terz-Butilossicarbonile	HOBt	1-Idrossibenzotriazolo
Bu s-Bu	Butile sec-Butile	НОМО	Orbitale molecolare a più alta energia occupato
t-Bu	terz-Butile	HPLC	Cromatografia liquida ad alte prestazioni
Bz	Benzoile	HIV	Virus dell'immunodeficienza umana
Cbz	Carbossibenzile	IR	Infrarosso
CDI	Carbonildiimidazolo	KHDMS	Potassio esametildisilazide
CI	Ionizzazione chimica	LCAO	Combinazione lineare di orbitali atomici
CoA	Coenzima A	LDA	Litio diisopropilammide
COT	Cicloottatetraene	LHDMS	Litio esametildisilazide
Ср	Ciclopentadienile	LICA	Litio isopropilcicloesilammide
DABCO	1,4-Diazabiciclo[2.2.2]ottano	LMTP, LiMTP	Litio 2,2,6,6-tetrametilpiperidide
DBE	Equivalente di doppio legame	LUMO	Orbitale molecolare a più bassa energia non
DBN	1,5-Diazabiciclo[4.3.0]non-5-ene		occupato
DBU	1,8-Diazabiciclo[5.4.0]undec-7-ene	m-CPBA	Acido meta-cloroperossibenzoico
DCC	N,N'-dicicloesilcarbodimmide	Me	Metile
DDQ	2,3-Dicloro-5,6-diciano-1,4-benzochinone	MO	Orbitale molecolare
DEAD	Dietil azodicarbossilato	MOM	Metossimetile
DIBAL	Disobutilalluminio idruro	Ms	Metansolfonile (mesile)
DMAP	4-Dimetilamminopiridina	NAD	Nicotinammide adenin dinucleotide
DME	1,2-Dimetossietano	NADH	NAD ridotto
DMF	N,N-Dimetilformammide	NBS	N-Bromosuccinimmide
DMPU	1,3-Dimetil-3,4,5,6-tetraidro-	NIS	N-Iodosuccinimmide
	2 (1H)-pirimidinone	NMO	N-Metilmorfolina-N-ossido
DMS	Dimetil solfuro	NMR	Risonanza magnetica nucleare
DMSO	Dimetil solfossido	NOE	Effetto nucleare Overhauser
DNA	Acido deossiribonucleico	OA	Orbitale atomico

vvii	ABBREVIAZIONI

PCC	Piridinio clorocromato	STM	Microscopia ad effetto tunnel
PDC	Piridinio dicromato	TBDMS	Terz-butildimetilsilile
Ph	Fenile	TBDPS	Terz-butildifenilsilile
PPA	Acido polifosforico	Tf	Trifluorometansolfonile (triflile)
Pr	Propile	THF	Tetraidrofurano
i-Pr	iso-Propile	THP	Tetraidropirano
PTC	Catalisi a trasferimento di fase	TIPS	Triisopropilsilile
PTSA	Acido <i>p</i> -toluensolfonico	TMEDA	N,N,N',N'-tetrametil-1,2-etilendiammina
Py	Piridina	TMP	2,2,6,6-Tetrametilpiperidina
Red Al	Sodio bis(2-metossietossi) alluminio idruro	TMS	Trimetilsilile, tetrametilsilano
RNA	Acido Ribonucleico	TMSOTf	Trimetilsilil triflato
SAC	Catalisi acida specifica	TPAP	Tetra-N-propilammonio perrutenato
SAM	S-Adenosil metionina	Tr	Trifenilmetile (tritile)
SBC	Catalisi basica specifica	TS	Stato di transizione
S_{N}^{1}	Sostituzione nucleofila unimolecolare	Ts	<i>p</i> -Toluensolfonile, tosile
S _N 2	Sostituzione nucleofila bimolecolare	UV	Ultravioletto
SOMO	Orbitale molecolare singolarmente occupato	VSEPR	Repulsione tra le coppie di elettroni nel guscio di valenza